Formation of individual stripes in a mixed-dimensional cold-atom Fermi–Hubbard system

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-01-01 DOI:10.1038/s41586-024-08270-7
Dominik Bourgund, Thomas Chalopin, Petar Bojović, Henning Schlömer, Si Wang, Titus Franz, Sarah Hirthe, Annabelle Bohrdt, Fabian Grusdt, Immanuel Bloch, Timon A. Hilker
{"title":"Formation of individual stripes in a mixed-dimensional cold-atom Fermi–Hubbard system","authors":"Dominik Bourgund, Thomas Chalopin, Petar Bojović, Henning Schlömer, Si Wang, Titus Franz, Sarah Hirthe, Annabelle Bohrdt, Fabian Grusdt, Immanuel Bloch, Timon A. Hilker","doi":"10.1038/s41586-024-08270-7","DOIUrl":null,"url":null,"abstract":"The relation between d-wave superconductivity and stripes is fundamental to the understanding of ordered phases in high-temperature cuprate superconductors1–6. These phases can be strongly influenced by anisotropic couplings, leading to higher critical temperatures, as emphasized by the recent discovery of superconductivity in nickelates7–10. Quantum simulators with ultracold atoms provide a versatile platform to engineer such couplings and to observe emergent structures in real space with single-particle resolution. Here we show, to our knowledge, the first signatures of individual stripes in a cold-atom Fermi–Hubbard quantum simulator using mixed-dimensional (mixD) settings. Increasing the energy scale of hole–hole attraction to the spin exchange energy, we access the interesting crossover temperature regime in which stripes begin to form11. We observe extended, attractive correlations between hole dopants and find an increased probability of forming larger structures akin to individual stripes. In the spin sector, we study correlation functions up to the third order and find results consistent with stripe formation. These observations are interpreted as a precursor to the stripe phase, which is characterized by interleaved charge and spin density wave ordering with fluctuating lines of dopants separating domains of opposite antiferromagnetic order12–14. Observations of the formation of individual stripes in a mixed-dimensional cold-atom Fermi–Hubbard quantum simulator are described, enhancing understanding of the phase diagram of high-temperature superconducting materials and the relationship between charge pairs and stripes.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"637 8044","pages":"57-62"},"PeriodicalIF":50.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08270-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08270-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The relation between d-wave superconductivity and stripes is fundamental to the understanding of ordered phases in high-temperature cuprate superconductors1–6. These phases can be strongly influenced by anisotropic couplings, leading to higher critical temperatures, as emphasized by the recent discovery of superconductivity in nickelates7–10. Quantum simulators with ultracold atoms provide a versatile platform to engineer such couplings and to observe emergent structures in real space with single-particle resolution. Here we show, to our knowledge, the first signatures of individual stripes in a cold-atom Fermi–Hubbard quantum simulator using mixed-dimensional (mixD) settings. Increasing the energy scale of hole–hole attraction to the spin exchange energy, we access the interesting crossover temperature regime in which stripes begin to form11. We observe extended, attractive correlations between hole dopants and find an increased probability of forming larger structures akin to individual stripes. In the spin sector, we study correlation functions up to the third order and find results consistent with stripe formation. These observations are interpreted as a precursor to the stripe phase, which is characterized by interleaved charge and spin density wave ordering with fluctuating lines of dopants separating domains of opposite antiferromagnetic order12–14. Observations of the formation of individual stripes in a mixed-dimensional cold-atom Fermi–Hubbard quantum simulator are described, enhancing understanding of the phase diagram of high-temperature superconducting materials and the relationship between charge pairs and stripes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
The structure of bad cholesterol comes into focus What do people eat and why do they eat it? Researchers: concentrate on bread-and-butter issues to get political buy-in Who built Europe’s first cities? Clues about the urban revolution emerge Science communication has a problem — communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1