Dysregulation of mTOR signalling is a converging mechanism in lissencephaly

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-01-01 DOI:10.1038/s41586-024-08341-9
Ce Zhang, Dan Liang, A. Gulhan Ercan-Sencicek, Aybike S. Bulut, Joelly Cortes, Iris Q. Cheng, Octavian Henegariu, Sayoko Nishimura, Xinyuan Wang, A. Buket Peksen, Yutaka Takeo, Caner Caglar, TuKiet T. Lam, Merve Nur Koroglu, Anand Narayanan, Francesc Lopez-Giraldez, Danielle F. Miyagishima, Ketu Mishra-Gorur, Tanyeri Barak, Katsuhito Yasuno, E. Zeynep Erson-Omay, Cengiz Yalcinkaya, Guilin Wang, Shrikant Mane, Hande Kaymakcalan, Aslan Guzel, A. Okay Caglayan, Beyhan Tuysuz, Nenad Sestan, Murat Gunel, Angeliki Louvi, Kaya Bilguvar
{"title":"Dysregulation of mTOR signalling is a converging mechanism in lissencephaly","authors":"Ce Zhang, Dan Liang, A. Gulhan Ercan-Sencicek, Aybike S. Bulut, Joelly Cortes, Iris Q. Cheng, Octavian Henegariu, Sayoko Nishimura, Xinyuan Wang, A. Buket Peksen, Yutaka Takeo, Caner Caglar, TuKiet T. Lam, Merve Nur Koroglu, Anand Narayanan, Francesc Lopez-Giraldez, Danielle F. Miyagishima, Ketu Mishra-Gorur, Tanyeri Barak, Katsuhito Yasuno, E. Zeynep Erson-Omay, Cengiz Yalcinkaya, Guilin Wang, Shrikant Mane, Hande Kaymakcalan, Aslan Guzel, A. Okay Caglayan, Beyhan Tuysuz, Nenad Sestan, Murat Gunel, Angeliki Louvi, Kaya Bilguvar","doi":"10.1038/s41586-024-08341-9","DOIUrl":null,"url":null,"abstract":"Cerebral cortex development in humans is a highly complex and orchestrated process that is under tight genetic regulation. Rare mutations that alter gene expression or function can disrupt the structure of the cerebral cortex, resulting in a range of neurological conditions1. Lissencephaly (‘smooth brain’) spectrum disorders comprise a group of rare, genetically heterogeneous congenital brain malformations commonly associated with epilepsy and intellectual disability2. However, the molecular mechanisms underlying disease pathogenesis remain unknown. Here we establish hypoactivity of the mTOR pathway as a clinically relevant molecular mechanism in lissencephaly spectrum disorders. We characterized two types of cerebral organoid derived from individuals with genetically distinct lissencephalies with a recessive mutation in p53-induced death domain protein 1 (PIDD1) or a heterozygous chromosome 17p13.3 microdeletion leading to Miller–Dieker lissencephaly syndrome (MDLS). PIDD1-mutant organoids and MDLS organoids recapitulated the thickened cortex typical of human lissencephaly and demonstrated dysregulation of protein translation, metabolism and the mTOR pathway. A brain-selective activator of mTOR complex 1 prevented and reversed cellular and molecular defects in the lissencephaly organoids. Our findings show that a converging molecular mechanism contributes to two genetically distinct lissencephaly spectrum disorders. Cellular, transcriptomic and proteomic analyses of organoids derived from human induced pluripotent stem cells show that mTOR pathway hypoactivation is involved in two genetically distinct lissencephaly spectrum disorders.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"638 8049","pages":"172-181"},"PeriodicalIF":50.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08341-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08341-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebral cortex development in humans is a highly complex and orchestrated process that is under tight genetic regulation. Rare mutations that alter gene expression or function can disrupt the structure of the cerebral cortex, resulting in a range of neurological conditions1. Lissencephaly (‘smooth brain’) spectrum disorders comprise a group of rare, genetically heterogeneous congenital brain malformations commonly associated with epilepsy and intellectual disability2. However, the molecular mechanisms underlying disease pathogenesis remain unknown. Here we establish hypoactivity of the mTOR pathway as a clinically relevant molecular mechanism in lissencephaly spectrum disorders. We characterized two types of cerebral organoid derived from individuals with genetically distinct lissencephalies with a recessive mutation in p53-induced death domain protein 1 (PIDD1) or a heterozygous chromosome 17p13.3 microdeletion leading to Miller–Dieker lissencephaly syndrome (MDLS). PIDD1-mutant organoids and MDLS organoids recapitulated the thickened cortex typical of human lissencephaly and demonstrated dysregulation of protein translation, metabolism and the mTOR pathway. A brain-selective activator of mTOR complex 1 prevented and reversed cellular and molecular defects in the lissencephaly organoids. Our findings show that a converging molecular mechanism contributes to two genetically distinct lissencephaly spectrum disorders. Cellular, transcriptomic and proteomic analyses of organoids derived from human induced pluripotent stem cells show that mTOR pathway hypoactivation is involved in two genetically distinct lissencephaly spectrum disorders.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mTOR信号的失调是无脑畸形的一种会聚机制
人类大脑皮层的发育是一个高度复杂和协调的过程,在严格的基因调控下。改变基因表达或功能的罕见突变会破坏大脑皮层的结构,导致一系列神经系统疾病。无脑畸形(“平滑脑”)谱系障碍包括一组罕见的、遗传异质性的先天性脑畸形,通常与癫痫和智力残疾有关2。然而,疾病发病的分子机制尚不清楚。在这里,我们建立mTOR通路的低活性作为无脑谱系障碍的临床相关分子机制。我们鉴定了两种类型的脑类器官,这些脑类器官来自遗传上不同的无脑畸形患者,其中p53诱导的死亡结构域蛋白1 (PIDD1)隐性突变或杂合染色体17p13.3微缺失导致米勒-迪克尔无脑畸形综合征(MDLS)。pidd1突变的类器官和MDLS类器官重现了人类无脑畸形典型的增厚皮层,并表现出蛋白质翻译、代谢和mTOR途径的失调。mTOR复合物1的脑选择性激活剂预防和逆转无脑类器官的细胞和分子缺陷。我们的研究结果表明,趋同的分子机制有助于两种遗传上不同的无脑谱系障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Poetry on Mars and robots on Earth: Books in brief Bonobos know when you’re in the know ― and when you’re not From viral variants to devastating storms, how names shape the public's reaction to science Scientists globally are racing to save vital health databases taken down amid Trump chaos How my research focus exposed me to threats and harassment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1