{"title":"Excitation-mode-selective emission through multiexcitonic states in a double perovskite single crystal","authors":"Hao Suo, Nan Wang, Yu Zhang, Xin Zhang, Jinmeng Xiang, Xiaojia Wang, Guansheng Xing, Dongxu Guo, Jiwen Chang, Yu Wang, Panlai Li, Zhijun Wang, Yuhai Zhang, Bing Chen, Shuzhou Li, Chongfeng Guo, Feng Wang","doi":"10.1038/s41377-024-01689-7","DOIUrl":null,"url":null,"abstract":"<p>Low-dimensional lead-free metal halide perovskites are highly attractive for cutting-edge optoelectronic applications. Herein, we report a class of scandium-based double perovskite crystals comprising antimony dopants that can generate multiexcitonic emissions in the ultraviolet, blue, and yellow spectral regions. Owing to the zero-dimensional nature of the crystal lattice that minimizes energy crosstalk, different excitonic states in the crystals can be selectively excited by ultraviolet light, X-ray irradiation, and mechanical action, enabling dynamic control of steady/transient-state spectral features by modulating the excitation modes. Remarkably, the transparent crystal exhibits highly efficient white photoluminescence (quantum yield >97%), X-ray excited blue emission with long afterglow (duration >9 h), and high-brightness self-reproducible violet-blue mechanoluminescence. These findings reveal the exceptional capability of low-dimensional perovskite crystals for integrating various excitonic luminescence, offering exciting opportunities for multi-level data encryption and all-in-one authentication technologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"81 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01689-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Low-dimensional lead-free metal halide perovskites are highly attractive for cutting-edge optoelectronic applications. Herein, we report a class of scandium-based double perovskite crystals comprising antimony dopants that can generate multiexcitonic emissions in the ultraviolet, blue, and yellow spectral regions. Owing to the zero-dimensional nature of the crystal lattice that minimizes energy crosstalk, different excitonic states in the crystals can be selectively excited by ultraviolet light, X-ray irradiation, and mechanical action, enabling dynamic control of steady/transient-state spectral features by modulating the excitation modes. Remarkably, the transparent crystal exhibits highly efficient white photoluminescence (quantum yield >97%), X-ray excited blue emission with long afterglow (duration >9 h), and high-brightness self-reproducible violet-blue mechanoluminescence. These findings reveal the exceptional capability of low-dimensional perovskite crystals for integrating various excitonic luminescence, offering exciting opportunities for multi-level data encryption and all-in-one authentication technologies.