Increased urban ozone in heatwaves due to temperature-induced emissions of anthropogenic volatile organic compounds

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Nature Geoscience Pub Date : 2025-01-02 DOI:10.1038/s41561-024-01608-w
Momei Qin, Yongliang She, Ming Wang, Hongli Wang, Yunhua Chang, Zhaofeng Tan, Jingyu An, Jian Huang, Zibing Yuan, Jun Lu, Qian Wang, Cong Liu, Zhenxin Liu, Xiaodong Xie, Jingyi Li, Hong Liao, Havala O. T. Pye, Cheng Huang, Song Guo, Min Hu, Yuanhang Zhang, Daniel J. Jacob, Jianlin Hu
{"title":"Increased urban ozone in heatwaves due to temperature-induced emissions of anthropogenic volatile organic compounds","authors":"Momei Qin, Yongliang She, Ming Wang, Hongli Wang, Yunhua Chang, Zhaofeng Tan, Jingyu An, Jian Huang, Zibing Yuan, Jun Lu, Qian Wang, Cong Liu, Zhenxin Liu, Xiaodong Xie, Jingyi Li, Hong Liao, Havala O. T. Pye, Cheng Huang, Song Guo, Min Hu, Yuanhang Zhang, Daniel J. Jacob, Jianlin Hu","doi":"10.1038/s41561-024-01608-w","DOIUrl":null,"url":null,"abstract":"Urban ozone (O3) pollution correlates with temperature, and higher O3 often occurs during heatwaves, threatening public health. However, limited data on how anthropogenic volatile organic compound (AVOC) precursor emissions vary with temperature hinders understanding their impact on O3. Here we show that the increase in non-combustion AVOC emissions (for example, from volatile chemical products) during a heatwave in Shanghai contributes significantly to increased O3, on the basis of ambient measurements, emissions testing and air quality modelling. AVOC concentrations increase ~twofold when the temperature increases from 25 °C to 35 °C due to air stagnation and increased emissions. During the heatwave, higher concentrations result in an 82% increase in VOC OH reactivity. Air quality simulations reveal that temperature-driven AVOC emissions increases account for 8% (1.6 s–1) of this reactivity increase and enhance O3 by 4.6 ppb. Moreover, we predict a more profound (twofold) increase in OH reactivity of oxygenated VOCs, facilitating radical production and O3 formation. Enhanced AVOC emissions trigger O3 enhancements in large cities in East China during a heatwave, and similar effects may also happen in other AVOC-sensitive megacities globally. Reducing AVOC emissions, particularly non-combustion sources, which are currently less understood and regulated, could mitigate potential O3 pollution in urban environments during heatwaves. Ozone pollution is enhanced by increased non-combustion anthropogenic volatile organic compound emissions during heatwaves, according to atmospheric measurements and modelling of ozone concentrations in a heatwave in Shanghai.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 1","pages":"50-56"},"PeriodicalIF":15.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01608-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Urban ozone (O3) pollution correlates with temperature, and higher O3 often occurs during heatwaves, threatening public health. However, limited data on how anthropogenic volatile organic compound (AVOC) precursor emissions vary with temperature hinders understanding their impact on O3. Here we show that the increase in non-combustion AVOC emissions (for example, from volatile chemical products) during a heatwave in Shanghai contributes significantly to increased O3, on the basis of ambient measurements, emissions testing and air quality modelling. AVOC concentrations increase ~twofold when the temperature increases from 25 °C to 35 °C due to air stagnation and increased emissions. During the heatwave, higher concentrations result in an 82% increase in VOC OH reactivity. Air quality simulations reveal that temperature-driven AVOC emissions increases account for 8% (1.6 s–1) of this reactivity increase and enhance O3 by 4.6 ppb. Moreover, we predict a more profound (twofold) increase in OH reactivity of oxygenated VOCs, facilitating radical production and O3 formation. Enhanced AVOC emissions trigger O3 enhancements in large cities in East China during a heatwave, and similar effects may also happen in other AVOC-sensitive megacities globally. Reducing AVOC emissions, particularly non-combustion sources, which are currently less understood and regulated, could mitigate potential O3 pollution in urban environments during heatwaves. Ozone pollution is enhanced by increased non-combustion anthropogenic volatile organic compound emissions during heatwaves, according to atmospheric measurements and modelling of ozone concentrations in a heatwave in Shanghai.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由于温度引起的人为挥发性有机化合物的排放,热浪中城市臭氧增加
城市臭氧(O3)污染与温度有关,在热浪期间经常出现较高的O3,威胁公众健康。然而,关于人为挥发性有机化合物(AVOC)前体排放如何随温度变化的有限数据阻碍了了解其对O3的影响。本研究表明,基于环境测量、排放测试和空气质量模型,上海热浪期间非燃烧性AVOC排放(例如,来自挥发性化学产品)的增加对O3的增加有显著贡献。当温度从25°C升高到35°C时,由于空气停滞和排放增加,AVOC浓度增加约两倍。在热浪期间,较高的浓度导致VOC OH反应性增加82%。空气质量模拟表明,温度驱动的AVOC排放增加占反应性增加的8% (1.6 s-1), O3增加4.6 ppb。此外,我们预测氧化VOCs的OH反应活性会有更深刻的(两倍)增加,从而促进自由基的产生和O3的形成。在热浪期间,中国东部大城市的AVOC排放增加导致O3增加,全球其他对AVOC敏感的特大城市也可能发生类似的影响。减少AVOC排放,特别是目前尚不了解和监管的非燃烧源排放,可以减轻热浪期间城市环境中潜在的O3污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
期刊最新文献
Temperature rising Quasicrystalline shifting in natural orders Winter subglacial meltwater detected in a Greenland fjord Anthropogenic organic aerosol in Europe produced mainly through second-generation oxidation Davemaoite is present throughout the Earth’s lower mantle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1