High-performance p-n Thermocells by Interface Optimization Based on Liquid Metal for Powering Wearable Devices

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-02 DOI:10.1002/adfm.202417740
Yuqing Tian, Wei Wei, Zhouquan Sun, Yunhao Hu, Kerui Li, Qinghong Zhang, Yaogang Li, Chengyi Hou, Hongzhi Wang
{"title":"High-performance p-n Thermocells by Interface Optimization Based on Liquid Metal for Powering Wearable Devices","authors":"Yuqing Tian,&nbsp;Wei Wei,&nbsp;Zhouquan Sun,&nbsp;Yunhao Hu,&nbsp;Kerui Li,&nbsp;Qinghong Zhang,&nbsp;Yaogang Li,&nbsp;Chengyi Hou,&nbsp;Hongzhi Wang","doi":"10.1002/adfm.202417740","DOIUrl":null,"url":null,"abstract":"<p>Using body heat as a sustainable energy source through the thermoelectric effect to power wearable electronics is promising. Ionic thermoelectric materials based on the thermogalvanic effect can generate stable voltage under low-temperature differences, but their low thermopower and poor contact interface with electrodes hinder practical use. In this study, strong chaotropic salts are utilized to modify the solvation shells of ions, increasing the thermopower of the p-type redox couple [Fe(CN)₆]<sup>3</sup>⁻/[Fe(CN)₆]⁴⁻ to 3.98 mV K<sup>−1</sup>. Additionally, Arrhenius acid is introduced to inhibit the deprotonation of the n-type redox couple Fe<sup>3</sup>⁺/Fe<sup>2</sup>⁺, enhancing the thermopower to −2.29 mV K<sup>−1</sup>. Liquid metal electrodes, with excellent deformability and hydrogen bonding with hydrogel surfaces, effectively reduce the resistance of thermocells. Thus, a pair of p-n thermocells achieve a voltage output of 118 mV and a current density of 4.5 A m<sup>−</sup><sup>2</sup>, with a maximum power density of 0.11 W m<sup>−</sup><sup>2</sup> (Δ<i>T</i> = 5 K). A wearable device integrated with 18 p-n pairs can generate a voltage of 2.2 V from body heat and continuously power portable electronic devices. This work demonstrates the promising potential of wearable self-powered devices for practical daily applications.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 13","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202417740","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using body heat as a sustainable energy source through the thermoelectric effect to power wearable electronics is promising. Ionic thermoelectric materials based on the thermogalvanic effect can generate stable voltage under low-temperature differences, but their low thermopower and poor contact interface with electrodes hinder practical use. In this study, strong chaotropic salts are utilized to modify the solvation shells of ions, increasing the thermopower of the p-type redox couple [Fe(CN)₆]3⁻/[Fe(CN)₆]⁴⁻ to 3.98 mV K−1. Additionally, Arrhenius acid is introduced to inhibit the deprotonation of the n-type redox couple Fe3⁺/Fe2⁺, enhancing the thermopower to −2.29 mV K−1. Liquid metal electrodes, with excellent deformability and hydrogen bonding with hydrogel surfaces, effectively reduce the resistance of thermocells. Thus, a pair of p-n thermocells achieve a voltage output of 118 mV and a current density of 4.5 A m2, with a maximum power density of 0.11 W m2T = 5 K). A wearable device integrated with 18 p-n pairs can generate a voltage of 2.2 V from body heat and continuously power portable electronic devices. This work demonstrates the promising potential of wearable self-powered devices for practical daily applications.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于液态金属界面优化的高性能p-n热电池为可穿戴设备供电
通过热电效应,利用人体热量作为可持续能源,为可穿戴电子设备供电是很有前景的。基于热电效应的离子热电材料可以在低温差下产生稳定的电压,但热功率低,与电极接触界面差,阻碍了其实际应用。在这项研究中,强向乱性盐被用来修饰离子的溶剂化壳,增加p型氧化还原对[Fe(CN)₆]3⁻/[Fe(CN)₆]⁴⁻至3.98 mV K−1。此外,引入阿伦尼乌斯酸抑制n型氧化还原对Fe3 + /Fe2 +的去质子化,将热电性能提高到−2.29 mV K−1。液态金属电极具有优异的可变形性和与水凝胶表面的氢键,有效地降低了热电池的电阻。因此,一对p-n热电池的输出电压为118 mV,电流密度为4.5 a m−2,最大功率密度为0.11 W m−2 (ΔT = 5 K)。集成了18对p-n热电池的可穿戴设备可以从人体热量中产生2.2 V的电压,并连续为便携式电子设备供电。这项工作展示了可穿戴自供电设备在实际日常应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
guanidine hydrochloride
阿拉丁
glutaraldehyde
阿拉丁
potassium ferricyanide (K3[Fe(CN)6])
阿拉丁
trifluoromethanesulfonic acid
阿拉丁
iron(II) trifluoromethanesulfonate
阿拉丁
iron(III) trifluoromethanesulfonate
阿拉丁
poly(vinyl alcohol) (PVA)
阿拉丁
α-Ketoglutaric acid
阿拉丁
Acrylamide (AM)
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Strategic Design of Oxophilic Dopants for Active and Durable Alkaline Hydrogen Evolution Reaction Under Seawater (Adv. Funct. Mater. 3/2026) Recycling Spent LiFePO4 Batteries for Fabricating LiI·3H2O and Li2CO3 via Iodine Targeted and Mild Redox Intramolecular Multifunctionalization in a Fused N-Rich Scaffold Produces a Record-Density CF3 Energetic Light-Carbon Double Transfer Membrane for Carbon Fixation in Microalgae Nickel–Iron Clusters on Bismuth Vanadate for Efficient Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1