Diana Victoria Arellano-Yasaca, Chen-Yeon Chu, Iván Ríos-García, Wan Nazihah Liyana Wan Jusoh
{"title":"Process optimization for ammonium removal from municipal food waste treatment plant liquid digestate using natural rocks and volcanic ash","authors":"Diana Victoria Arellano-Yasaca, Chen-Yeon Chu, Iván Ríos-García, Wan Nazihah Liyana Wan Jusoh","doi":"10.1016/j.biombioe.2024.107581","DOIUrl":null,"url":null,"abstract":"This study investigates the adsorption of ammonium (NH<ce:inf loc=\"post\">4</ce:inf><ce:sup loc=\"post\">+</ce:sup>) from the liquid fraction of food waste digestate. Six natural rocks and volcanic ash were used as adsorbents. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were employed to analyze mineral composition and surface morphology before and after adsorption. Results indicated a significant ammonium reduction of up to 64 %, with an adsorption capacity of 93 mg L<ce:sup loc=\"post\">−1</ce:sup> at equilibrium within 50 min. After adsorption, changes in the XRD patterns and mineral composition confirmed transformations in the adsorbents, SEM revealed rough and irregular surface morphologies, likely attributed to the uptake of NH<ce:inf loc=\"post\">4</ce:inf><ce:sup loc=\"post\">+</ce:sup>, and EDS analysis showed a decrease in the concentration of exchangeable cations, which was associated with increased nitrogen levels in each rock sample. These findings suggest that the primary mechanism of these materials for NH<ce:inf loc=\"post\">4</ce:inf><ce:sup loc=\"post\">+</ce:sup> adsorption is cation exchange. Additionally, generated models for nitrogen removal efficiency (NRE) and adsorption capacity (AC) concluded that factors such as pH, adsorbent dosage, and temperature also influenced adsorption efficiency. Triplicate experimental runs and ANOVA confirmed the models' predictive accuracy, yielding an R<ce:sup loc=\"post\">2</ce:sup> of 0.9955, a standard deviation of 1.02, and a minimal variability of 2.63 % for NRE. Optimal conditions were identified at a pH of 6, a dosage of 0.32 g, and a temperature of 23 °C, achieving an NRE of 62 % and an AC of 159 mg g<ce:sup loc=\"post\">−1</ce:sup>. Efficient ammonium adsorption by these natural adsorbents shows promise for practical wastewater treatment and environmental remediation.","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"25 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biombioe.2024.107581","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the adsorption of ammonium (NH4+) from the liquid fraction of food waste digestate. Six natural rocks and volcanic ash were used as adsorbents. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were employed to analyze mineral composition and surface morphology before and after adsorption. Results indicated a significant ammonium reduction of up to 64 %, with an adsorption capacity of 93 mg L−1 at equilibrium within 50 min. After adsorption, changes in the XRD patterns and mineral composition confirmed transformations in the adsorbents, SEM revealed rough and irregular surface morphologies, likely attributed to the uptake of NH4+, and EDS analysis showed a decrease in the concentration of exchangeable cations, which was associated with increased nitrogen levels in each rock sample. These findings suggest that the primary mechanism of these materials for NH4+ adsorption is cation exchange. Additionally, generated models for nitrogen removal efficiency (NRE) and adsorption capacity (AC) concluded that factors such as pH, adsorbent dosage, and temperature also influenced adsorption efficiency. Triplicate experimental runs and ANOVA confirmed the models' predictive accuracy, yielding an R2 of 0.9955, a standard deviation of 1.02, and a minimal variability of 2.63 % for NRE. Optimal conditions were identified at a pH of 6, a dosage of 0.32 g, and a temperature of 23 °C, achieving an NRE of 62 % and an AC of 159 mg g−1. Efficient ammonium adsorption by these natural adsorbents shows promise for practical wastewater treatment and environmental remediation.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.