Gabriel Imwinkelried, Luciana Bonetto, Clara Saux, María B. Blanco
{"title":"High-value products from chickpea residues by thermal pyrolysis and its environmental impacts","authors":"Gabriel Imwinkelried, Luciana Bonetto, Clara Saux, María B. Blanco","doi":"10.1016/j.biombioe.2024.107584","DOIUrl":null,"url":null,"abstract":"High value products could be obtained from chickpea residues (CR) by thermal pyrolysis. Biomass was previously characterized in terms of chemical composition and thermal behavior by elemental analysis, infrared spectroscopy (FTIR) and thermogravimetric studies. From temperature effect on products, 500 °C showed the highest yield to bio-oil (44 wt%). While higher temperatures promoted gas emissions from secondary cracking reactions. At this temperature, hydrocarbons, furans and alcohols, considered as desirable molecules, were improved in the liquid. From them, 2,5-dimethylfuran (DMF) showed an important production. This compound is considered a second-generation biofuel. In the gases, CO<ce:inf loc=\"post\">2</ce:inf> was the most emitted compound at this temperature, followed by CO from the thermal decomposition of cellulose and hemicellulose. On the other hand, CH<ce:inf loc=\"post\">4</ce:inf> emission is caused by the degradation of lignin and its concentration increases with temperature. In addition, volatile organic compounds (VOCs) in the gas phase, including toluene, 2-methylbutanal, 3-methylbutanal, 2-methylfuran, octane, 2-octene, dimethyl disulfide and 4-methylpentanenitrile, were identified under the experimental conditions in this study. The solid product, bio-char, shows useful properties including a Higher Heating Value (HHV) of 19.19 MJ/kg and a functional composition analyzed by FTIR and X-ray photoelectron spectroscopy (XPS) with a higher proportion of non-oxygenated groups. It could be considered for energy production, soil amendment and water or air treatment. Its highest yield (43 wt%) was obtained at 400 °C. Therefore, the three reaction products of CR pyrolysis reported several value-added compounds from renewable sources of great interest for industrial and chemical purposes.","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"14 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biombioe.2024.107584","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
High value products could be obtained from chickpea residues (CR) by thermal pyrolysis. Biomass was previously characterized in terms of chemical composition and thermal behavior by elemental analysis, infrared spectroscopy (FTIR) and thermogravimetric studies. From temperature effect on products, 500 °C showed the highest yield to bio-oil (44 wt%). While higher temperatures promoted gas emissions from secondary cracking reactions. At this temperature, hydrocarbons, furans and alcohols, considered as desirable molecules, were improved in the liquid. From them, 2,5-dimethylfuran (DMF) showed an important production. This compound is considered a second-generation biofuel. In the gases, CO2 was the most emitted compound at this temperature, followed by CO from the thermal decomposition of cellulose and hemicellulose. On the other hand, CH4 emission is caused by the degradation of lignin and its concentration increases with temperature. In addition, volatile organic compounds (VOCs) in the gas phase, including toluene, 2-methylbutanal, 3-methylbutanal, 2-methylfuran, octane, 2-octene, dimethyl disulfide and 4-methylpentanenitrile, were identified under the experimental conditions in this study. The solid product, bio-char, shows useful properties including a Higher Heating Value (HHV) of 19.19 MJ/kg and a functional composition analyzed by FTIR and X-ray photoelectron spectroscopy (XPS) with a higher proportion of non-oxygenated groups. It could be considered for energy production, soil amendment and water or air treatment. Its highest yield (43 wt%) was obtained at 400 °C. Therefore, the three reaction products of CR pyrolysis reported several value-added compounds from renewable sources of great interest for industrial and chemical purposes.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.