Jackie L. Norrie, Marybeth S. Lupo, Danielle R. Little, Abbas Shirinifard, Akhilesh Mishra, Qiong Zhang, Natalie Geiger, Daniel Putnam, Nadhir Djekidel, Cody Ramirez, Beisi Xu, Jacob M. Dundee, Jiang Yu, Xiang Chen, Michael A. Dyer
{"title":"Latent epigenetic programs in Müller glia contribute to stress and disease response in the retina","authors":"Jackie L. Norrie, Marybeth S. Lupo, Danielle R. Little, Abbas Shirinifard, Akhilesh Mishra, Qiong Zhang, Natalie Geiger, Daniel Putnam, Nadhir Djekidel, Cody Ramirez, Beisi Xu, Jacob M. Dundee, Jiang Yu, Xiang Chen, Michael A. Dyer","doi":"10.1016/j.devcel.2024.12.014","DOIUrl":null,"url":null,"abstract":"Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development. Although promoter activity is correlated with chromatin accessibility, we discovered several hundred genes that were transcriptionally silent but had accessible chromatin at their promoters. Most of those silent/accessible gene promoters were in Müller glial cells, which function to maintain retinal homeostasis and respond to stress, injury, or disease. We refer to these as “pliancy genes” because they allow the Müller glia to rapidly change their gene expression and cellular state in response to retinal insults. The Müller glial cell pliancy program is established during development, and we demonstrate that pliancy genes are important for regulating inflammation in the murine retina <em>in vivo</em>.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"32 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development. Although promoter activity is correlated with chromatin accessibility, we discovered several hundred genes that were transcriptionally silent but had accessible chromatin at their promoters. Most of those silent/accessible gene promoters were in Müller glial cells, which function to maintain retinal homeostasis and respond to stress, injury, or disease. We refer to these as “pliancy genes” because they allow the Müller glia to rapidly change their gene expression and cellular state in response to retinal insults. The Müller glial cell pliancy program is established during development, and we demonstrate that pliancy genes are important for regulating inflammation in the murine retina in vivo.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.