{"title":"Neuronal Tracing and Visualization of Nerve Injury by a Membrane-Anchoring Aggregation-Induced Emission Probe","authors":"Rufan Mo, Ying Peng, Zeyang Ding, Huilin Xie, Zijie Qiu, Parvej Alam, Yong Liu, Gang Chen, Jianquan Zhang, Zheng Zhao, Ben Zhong Tang","doi":"10.1021/acsnano.4c12754","DOIUrl":null,"url":null,"abstract":"Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and <i>in vivo</i> imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging. MeOTFVP is strategically designed to target cell membranes by integrating into the phospholipid bilayer through its amphipathy. The donor–acceptor molecular skeleton facilitates a red shift of its photoluminescence into the near-infrared (NIR) spectrum, significantly improving tissue penetration. The affinity of MeOTFVP for cell membranes, coupled with its deep tissue penetration, allows precise tracing in the paw-dorsal root ganglia (DRG) circuit and detailed imaging of the sciatic nerve. This study showcases the application of MeOTFVP as a dual-function neuronal tracer, propelling forward the possibilities for advanced neuronal tracing and imaging using AIEgens.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12754","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and in vivo imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging. MeOTFVP is strategically designed to target cell membranes by integrating into the phospholipid bilayer through its amphipathy. The donor–acceptor molecular skeleton facilitates a red shift of its photoluminescence into the near-infrared (NIR) spectrum, significantly improving tissue penetration. The affinity of MeOTFVP for cell membranes, coupled with its deep tissue penetration, allows precise tracing in the paw-dorsal root ganglia (DRG) circuit and detailed imaging of the sciatic nerve. This study showcases the application of MeOTFVP as a dual-function neuronal tracer, propelling forward the possibilities for advanced neuronal tracing and imaging using AIEgens.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.