Sequence-specific, mechanophore-free mechanochemistry of DNA

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2025-01-02 DOI:10.1016/j.chempr.2024.11.014
Johannes Hahmann, Boris N. Schüpp, Aman Ishaqat, Arjuna Selvakumar, Robert Göstl, Frauke Gräter, Andreas Herrmann
{"title":"Sequence-specific, mechanophore-free mechanochemistry of DNA","authors":"Johannes Hahmann, Boris N. Schüpp, Aman Ishaqat, Arjuna Selvakumar, Robert Göstl, Frauke Gräter, Andreas Herrmann","doi":"10.1016/j.chempr.2024.11.014","DOIUrl":null,"url":null,"abstract":"Nucleic acids, such as DNA, are integral components of biological systems in that they steer many cellular processes and biotechnological applications. In addition, their monomer-precise sequence and accurately predictable structure render them an excellent model for exploring fundamental problems in nanotechnology and polymer science. In the field of polymer mechanochemistry, predetermined breaking points, called mechanophores, are used to endow macromolecules with chain-scission selectivity when subjected to external forces. However, this approach entails cumbersome chemical synthesis and limited outcome analysis. Here, we show the mechanophore-free, near-nucleotide-precise scission of nicked double-stranded DNA in a combined experimental and computational approach. We leverage next-generation sequencing to achieve monomer-level precision in assessing chain scission. Additionally, we monitor and control the scission distribution on the polymer’s backbone. Our research highlights the potential of DNA as a model polymer in the field of polymer mechanochemistry.","PeriodicalId":268,"journal":{"name":"Chem","volume":"4 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.11.014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleic acids, such as DNA, are integral components of biological systems in that they steer many cellular processes and biotechnological applications. In addition, their monomer-precise sequence and accurately predictable structure render them an excellent model for exploring fundamental problems in nanotechnology and polymer science. In the field of polymer mechanochemistry, predetermined breaking points, called mechanophores, are used to endow macromolecules with chain-scission selectivity when subjected to external forces. However, this approach entails cumbersome chemical synthesis and limited outcome analysis. Here, we show the mechanophore-free, near-nucleotide-precise scission of nicked double-stranded DNA in a combined experimental and computational approach. We leverage next-generation sequencing to achieve monomer-level precision in assessing chain scission. Additionally, we monitor and control the scission distribution on the polymer’s backbone. Our research highlights the potential of DNA as a model polymer in the field of polymer mechanochemistry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Cold-resilient zinc batteries with organic-free solvation structures Producing economically viable renewable diesel by upgrading organic solid waste with natural gas ortho-Aromatic polyamides by ring-opening polymerization of N-carboxyanhydrides In-depth understanding and precise modulation of surface reconstruction during heterogeneous electrocatalysis: From model to practical catalyst The progress and challenges of tin-lead alloyed perovskites: Toward the development of large-scale all-perovskite tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1