Suppressing the Dark Current of PbS QD SWIR Photodetector by Freeze-Treated Hole Transport Layer

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-11-12 DOI:10.1109/LED.2024.3496412
Fan Fang;Weichao Wang;Yiwen Li;Xiao Wang;Lihai Xu;Simin Chen;Tao Cao;Haibo Zhu;Lei Rao;Kaiyu Luo;Jun Tang;Yulong Chen;Junjie Hao;Wei Chen;Haodong Tang
{"title":"Suppressing the Dark Current of PbS QD SWIR Photodetector by Freeze-Treated Hole Transport Layer","authors":"Fan Fang;Weichao Wang;Yiwen Li;Xiao Wang;Lihai Xu;Simin Chen;Tao Cao;Haibo Zhu;Lei Rao;Kaiyu Luo;Jun Tang;Yulong Chen;Junjie Hao;Wei Chen;Haodong Tang","doi":"10.1109/LED.2024.3496412","DOIUrl":null,"url":null,"abstract":"Lead sulfide (PbS) quantum dot (QD) photodetector is considered as a key component of the next-generation infrared machine vision applications for its wide detection range and effective fabrication cost. Leakage current caused by film cracks and trap states during the film fabrication stops the further optimization of device performance and slows down the industrialization of the PbS QD photodetector. An optimized hole transport layer based on PbS QD with minimized cracks and trap states is achieved through a freeze-centrifugation purification before the ligand-exchange process, leading to a suppressed dark current density (260 nA/cm\n<inline-formula> <tex-math>$^{{2}}\\text {)}$ </tex-math></inline-formula>\n, strongly reduced noise current (26 fA/Hz\n<inline-formula> <tex-math>$^{{1}{/{2}}}\\text {)}$ </tex-math></inline-formula>\n. Enhanced film quality brings an ultra-high detectivity (\n<inline-formula> <tex-math>${5}.{47}\\times {10} ^{{12}}$ </tex-math></inline-formula>\nJones) and faster response-time (\n<inline-formula> <tex-math>$1.4\\mu$ </tex-math></inline-formula>\ns) of the freeze-treated photodetector under zero bias.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"52-55"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10750841/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Lead sulfide (PbS) quantum dot (QD) photodetector is considered as a key component of the next-generation infrared machine vision applications for its wide detection range and effective fabrication cost. Leakage current caused by film cracks and trap states during the film fabrication stops the further optimization of device performance and slows down the industrialization of the PbS QD photodetector. An optimized hole transport layer based on PbS QD with minimized cracks and trap states is achieved through a freeze-centrifugation purification before the ligand-exchange process, leading to a suppressed dark current density (260 nA/cm $^{{2}}\text {)}$ , strongly reduced noise current (26 fA/Hz $^{{1}{/{2}}}\text {)}$ . Enhanced film quality brings an ultra-high detectivity ( ${5}.{47}\times {10} ^{{12}}$ Jones) and faster response-time ( $1.4\mu$ s) of the freeze-treated photodetector under zero bias.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冻干空穴传输层抑制PbS QD SWIR光电探测器暗电流
硫化铅量子点光电探测器以其广泛的探测范围和有效的制造成本被认为是下一代红外机器视觉应用的关键组成部分。在薄膜制作过程中,由于薄膜裂纹和陷阱态产生的漏电流阻碍了器件性能的进一步优化,减缓了PbS量子点光电探测器的工业化进程。通过配体交换过程前的冷冻离心净化,获得了一个基于PbS QD的优化空穴传输层,该空穴传输层具有最小的裂纹和陷阱状态,从而抑制了暗电流密度(260 nA/cm $^{{2}}\text{)}$,显著降低了噪声电流(26 fA/Hz $^{{1}{/{2}}}\text{)}$。增强的胶片质量带来了超高的探测能力。{47}\ × {10} ^{{12}}$ Jones)和更快的响应时间($1.4\mu$ s)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Electron Devices Table of Contents IEEE Electron Device Letters Information for Authors EDS Meetings Calendar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1