Buried Interface Bilayer Engineering Toward High Efficiency and Stable Perovskite Modules

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-11-25 DOI:10.1109/LED.2024.3505233
Long Zhou;Xinyuan Feng;Jiaojiao Zhang;Xinxin Li;Yuanbo Du;Dazheng Chen;Weidong Zhu;He Xi;Jincheng Zhang;Chunfu Zhang;Yue Hao
{"title":"Buried Interface Bilayer Engineering Toward High Efficiency and Stable Perovskite Modules","authors":"Long Zhou;Xinyuan Feng;Jiaojiao Zhang;Xinxin Li;Yuanbo Du;Dazheng Chen;Weidong Zhu;He Xi;Jincheng Zhang;Chunfu Zhang;Yue Hao","doi":"10.1109/LED.2024.3505233","DOIUrl":null,"url":null,"abstract":"The inferior buried film crystallinity and interface recombination have severely limited the development of large-area perovskite modules. Buried interface engineering and energy alignment engineering are critical to achieving high efficiency and stable perovskite modules. Herein, we present a hole transport bilayer to improve the buried perovskite film contact and large-area perovskite film uniformity. The self-assembled monolayer (SAM) layer of Me-4PACz was introduced to modify the surface of PTAA, resulting in the improved buried film contact and better energy alignment. The hole transport bilayers exhibit hole-extraction capacity and high conductance. As a result, the blade-coated state-of-the-art cells realize an impressive efficiency of 23.52% and a high efficiency of 20.18% for inverted perovskite modules with an aperture area of 65 cm2. Moreover, the improved buried film and suppressed interface non-radiative recombination are beneficial to enhance the film and device stability. Our works provide an effective strategy to promote the manufacturing application of the large-area perovskite modules.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"88-91"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10767209/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The inferior buried film crystallinity and interface recombination have severely limited the development of large-area perovskite modules. Buried interface engineering and energy alignment engineering are critical to achieving high efficiency and stable perovskite modules. Herein, we present a hole transport bilayer to improve the buried perovskite film contact and large-area perovskite film uniformity. The self-assembled monolayer (SAM) layer of Me-4PACz was introduced to modify the surface of PTAA, resulting in the improved buried film contact and better energy alignment. The hole transport bilayers exhibit hole-extraction capacity and high conductance. As a result, the blade-coated state-of-the-art cells realize an impressive efficiency of 23.52% and a high efficiency of 20.18% for inverted perovskite modules with an aperture area of 65 cm2. Moreover, the improved buried film and suppressed interface non-radiative recombination are beneficial to enhance the film and device stability. Our works provide an effective strategy to promote the manufacturing application of the large-area perovskite modules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向高效稳定钙钛矿组件的埋藏界面双层工程
埋膜结晶度差和界面复合严重限制了大面积钙钛矿组件的发展。埋藏界面工程和能量排列工程是实现高效稳定钙钛矿组件的关键。在此,我们提出了一种空穴传输双层膜,以改善埋置钙钛矿膜的接触和大面积钙钛矿膜的均匀性。引入Me-4PACz的自组装单层(SAM)层对PTAA表面进行修饰,改善了埋膜接触,改善了能量排列。空穴输运双层具有吸空穴能力和高电导率。结果,最先进的叶片涂层电池实现了令人印象深刻的23.52%的效率,对于孔径面积为65 cm2的倒置钙钛矿组件,效率高达20.18%。此外,改进的埋膜和抑制的界面非辐射复合有利于提高膜和器件的稳定性。我们的工作为促进大面积钙钛矿组件的制造应用提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Electron Devices Table of Contents IEEE Electron Device Letters Information for Authors EDS Meetings Calendar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1