Design of a 14 T Actively Shielded Superconducting Magnet for Animal MRI

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Applied Superconductivity Pub Date : 2024-12-18 DOI:10.1109/TASC.2024.3520092
Weican Huang;Xiaohua Jiang;Guolin Chai;Xianrui Huang;Qingyu Zou;Ye Li
{"title":"Design of a 14 T Actively Shielded Superconducting Magnet for Animal MRI","authors":"Weican Huang;Xiaohua Jiang;Guolin Chai;Xianrui Huang;Qingyu Zou;Ye Li","doi":"10.1109/TASC.2024.3520092","DOIUrl":null,"url":null,"abstract":"A 14 T actively shielded animal MRI magnet has been designed and is currently under construction. The magnet has a warm bore of 175 mm diameter and consists of Nb\n<sub>3</sub>\nSn and NbTi solenoid coils. This paper presents the results of electromagnetic, structural and quench protection designs of the magnet. The magnetic field homogeneity is 0.9 ppm within a 60 mm diameter of spherical volume. The distance of 5 Gauss line from the magnet center is 2.4 m radially and 2.9 m axially. Stress analysis shows that the maximum axial and circumferential stresses in the coils are −73 MPa and 144 MPa, respectively. Under the worst quench scenarios, the maximum hotspot temperature and inter-layer voltage in the coils are constrained to 169 K and 720 V, respectively.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10806753/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A 14 T actively shielded animal MRI magnet has been designed and is currently under construction. The magnet has a warm bore of 175 mm diameter and consists of Nb 3 Sn and NbTi solenoid coils. This paper presents the results of electromagnetic, structural and quench protection designs of the magnet. The magnetic field homogeneity is 0.9 ppm within a 60 mm diameter of spherical volume. The distance of 5 Gauss line from the magnet center is 2.4 m radially and 2.9 m axially. Stress analysis shows that the maximum axial and circumferential stresses in the coils are −73 MPa and 144 MPa, respectively. Under the worst quench scenarios, the maximum hotspot temperature and inter-layer voltage in the coils are constrained to 169 K and 720 V, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
期刊最新文献
2024 Index IEEE Transactions on Applied Superconductivity Vol. 34 Front Cover Table of Contents IEEE Transactions on Applied Superconductivity Subject Categories for Article Numbering IEEE Transactions on Applied Superconductivity Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1