Progress in the Development of a 50-Period HTS Undulator for SXFEL

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Applied Superconductivity Pub Date : 2024-12-16 DOI:10.1109/TASC.2024.3519086
Kai Zhang;Dabin Wei;Zhuangwei Chen;Chan Liu;Yimin Tong;Difan Zhou;Chao Li;Marco Calvi;Anthony Dennis;John Durrell;Haixiao Deng;Zhentang Zhao
{"title":"Progress in the Development of a 50-Period HTS Undulator for SXFEL","authors":"Kai Zhang;Dabin Wei;Zhuangwei Chen;Chan Liu;Yimin Tong;Difan Zhou;Chao Li;Marco Calvi;Anthony Dennis;John Durrell;Haixiao Deng;Zhentang Zhao","doi":"10.1109/TASC.2024.3519086","DOIUrl":null,"url":null,"abstract":"Shorter period undulators typically require a higher on-axis magnetic field in order to achieve a practical deflection parameter, \n<italic>K</i>\n. Recent simulations and experiments have demonstrated that high-temperature superconducting (HTS) undulators, constructed from staggered-array bulk superconductors, can generate high undulator fields with period length as short as 10 mm. This advanced HTS technology has the potential to significantly enhance the photon energy range of synchrotron radiation light sources and free electron laser facilities. This paper reports on the progress made in developing of a 50-period bulk HTS undulator with period length of 12 mm for Shanghai soft x-ray free electron laser facility. It details the engineering design of the undulator prototype, thermal and mechanical analysis of the HTS variable temperature insert, and the current status of the system.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10804214/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Shorter period undulators typically require a higher on-axis magnetic field in order to achieve a practical deflection parameter, K . Recent simulations and experiments have demonstrated that high-temperature superconducting (HTS) undulators, constructed from staggered-array bulk superconductors, can generate high undulator fields with period length as short as 10 mm. This advanced HTS technology has the potential to significantly enhance the photon energy range of synchrotron radiation light sources and free electron laser facilities. This paper reports on the progress made in developing of a 50-period bulk HTS undulator with period length of 12 mm for Shanghai soft x-ray free electron laser facility. It details the engineering design of the undulator prototype, thermal and mechanical analysis of the HTS variable temperature insert, and the current status of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
期刊最新文献
2024 Index IEEE Transactions on Applied Superconductivity Vol. 34 Front Cover Table of Contents IEEE Transactions on Applied Superconductivity Subject Categories for Article Numbering IEEE Transactions on Applied Superconductivity Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1