Markus Clemens;Marvin-Lucas Henkel;Fotios Kasolis;Michael Günther
{"title":"Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework","authors":"Markus Clemens;Marvin-Lucas Henkel;Fotios Kasolis;Michael Günther","doi":"10.1109/TMAG.2024.3498593","DOIUrl":null,"url":null,"abstract":"Electromagneto-quasistatic (EMQS) field formulations allow to model resistive, capacitive, and inductive field effects while neglecting wave propagation. These field formulations are based on the Darwin–Ampére equation and yield different approximations of the full set of Maxwell’s equations depending on the choice of additional equations. Various discrete EMQS formulations are analyzed using the port-Hamiltonian system framework. It is shown that several symmetric EMQS formulations, e.g., combinations of the Darwin–Ampére equation and the Maxwell continuity equation, yield port-Hamiltonian differential-algebraic equation (pH-DAE) systems, which implies their numerical stability, energy conservation related to a specific EMQS variant of the Hamiltonian and dissipativity results.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 1","pages":"1-4"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10753088/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagneto-quasistatic (EMQS) field formulations allow to model resistive, capacitive, and inductive field effects while neglecting wave propagation. These field formulations are based on the Darwin–Ampére equation and yield different approximations of the full set of Maxwell’s equations depending on the choice of additional equations. Various discrete EMQS formulations are analyzed using the port-Hamiltonian system framework. It is shown that several symmetric EMQS formulations, e.g., combinations of the Darwin–Ampére equation and the Maxwell continuity equation, yield port-Hamiltonian differential-algebraic equation (pH-DAE) systems, which implies their numerical stability, energy conservation related to a specific EMQS variant of the Hamiltonian and dissipativity results.
期刊介绍:
Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.