Jiaqi Wei;Yuan Wang;Nuo Huang;Yan-Yu Zhang;Yi-Jun Zhu;Wenliang Hao;Chen Gong
{"title":"Constellation Optimization for MIMO VLC System With Signal-Dependent Noise: Receiver-Side Design and Lookup Table Establishment","authors":"Jiaqi Wei;Yuan Wang;Nuo Huang;Yan-Yu Zhang;Yi-Jun Zhu;Wenliang Hao;Chen Gong","doi":"10.1109/JPHOT.2024.3518583","DOIUrl":null,"url":null,"abstract":"This paper studies the constellation optimization approach for multiple-input multiple-output (MIMO) visible light communication (VLC) systems with signal-dependent noise (SDN). We propose a constellation optimization method aiming at minimizing the system pairwise error probability. In order to obtain the transmitter constellation, we design the demapping rules from the perspective of energy efficiency and illumination uniformity. For the scenario where receiver randomly moves, the constellation lookup table is proposed to transform real-time optimization into table lookup operation, which effectively reduces the real-time computational complexity. Simulation results show that the optimized constellation leads to lower symbol error rate (SER) than the method of maximizing minimum Euclidean distance. In addition, the constellation lookup table operation shows negligible SER performance degradation.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10804068/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the constellation optimization approach for multiple-input multiple-output (MIMO) visible light communication (VLC) systems with signal-dependent noise (SDN). We propose a constellation optimization method aiming at minimizing the system pairwise error probability. In order to obtain the transmitter constellation, we design the demapping rules from the perspective of energy efficiency and illumination uniformity. For the scenario where receiver randomly moves, the constellation lookup table is proposed to transform real-time optimization into table lookup operation, which effectively reduces the real-time computational complexity. Simulation results show that the optimized constellation leads to lower symbol error rate (SER) than the method of maximizing minimum Euclidean distance. In addition, the constellation lookup table operation shows negligible SER performance degradation.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.