HYPR4D Kernel Method With an Unsupervised 2.5SD+0.5TD Deep Learning Assisted Kernel Matrix

IF 3.5 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-08-12 DOI:10.1109/TRPMS.2024.3442690
Ju-Chieh Kevin Cheng;Erik Reimers;Vesna Sossi
{"title":"HYPR4D Kernel Method With an Unsupervised 2.5SD+0.5TD Deep Learning Assisted Kernel Matrix","authors":"Ju-Chieh Kevin Cheng;Erik Reimers;Vesna Sossi","doi":"10.1109/TRPMS.2024.3442690","DOIUrl":null,"url":null,"abstract":"We describe a deep learning (DL) assisted HYPR4D kernelized reconstruction which produces low-noise voxel-level time-activity-curves (TACs) while preserving quantification within small structures as well as consistent spatiotemporal patterns/features within measured data. The proposed method consists of the following advantages over other methods: 1) unsupervised single subject network training scheme independent of positron emission tomography (PET) tracers; 2) training data generated on-the-fly during reconstruction; 3) intrinsic spatiotemporal consistency provided by minimizing the \n<inline-formula> <tex-math>$L_{2}$ </tex-math></inline-formula>\n loss using pseudo 4-D (i.e., 2.5 Spatial Dimension + 0.5 Temporal Dimension or 2.5SD+0.5TD) patches between kernelized OSEM subset estimates; and 4) a final tuning step which minimizes over-smoothing from the network output within the kernel matrix. Contrast phantom, human [18F]FDG and [11C]RAC data acquired on GE SIGNA PET/MR were used for evaluations. The proposed DL HYPR4D kernel method outperformed the standard HYPR4D kernel method as well as TOF-OSEM and TOF-BSREM (Q.Clear) in terms contrast recovery versus noise. The proposed final tuning reduced the underestimation bias due to over-smoothing within a 4-mm target structure from ~15% to ~2% while maintaining low-noise voxel-level TACs. In addition, the proposed unsupervised DL assisted reconstruction also outperformed the supervised DL version in terms of bias reduction along the TACs and kinetic model fittings.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 1","pages":"20-28"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10634197/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a deep learning (DL) assisted HYPR4D kernelized reconstruction which produces low-noise voxel-level time-activity-curves (TACs) while preserving quantification within small structures as well as consistent spatiotemporal patterns/features within measured data. The proposed method consists of the following advantages over other methods: 1) unsupervised single subject network training scheme independent of positron emission tomography (PET) tracers; 2) training data generated on-the-fly during reconstruction; 3) intrinsic spatiotemporal consistency provided by minimizing the $L_{2}$ loss using pseudo 4-D (i.e., 2.5 Spatial Dimension + 0.5 Temporal Dimension or 2.5SD+0.5TD) patches between kernelized OSEM subset estimates; and 4) a final tuning step which minimizes over-smoothing from the network output within the kernel matrix. Contrast phantom, human [18F]FDG and [11C]RAC data acquired on GE SIGNA PET/MR were used for evaluations. The proposed DL HYPR4D kernel method outperformed the standard HYPR4D kernel method as well as TOF-OSEM and TOF-BSREM (Q.Clear) in terms contrast recovery versus noise. The proposed final tuning reduced the underestimation bias due to over-smoothing within a 4-mm target structure from ~15% to ~2% while maintaining low-noise voxel-level TACs. In addition, the proposed unsupervised DL assisted reconstruction also outperformed the supervised DL version in terms of bias reduction along the TACs and kinetic model fittings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非监督2.5SD+0.5TD深度学习辅助核矩阵的HYPR4D核方法
我们描述了一种深度学习(DL)辅助的HYPR4D核化重建,该重建产生低噪声体素级时间-活动曲线(tac),同时保留小结构内的量化以及测量数据内一致的时空模式/特征。与其他方法相比,该方法具有以下优点:1)独立于正电子发射断层扫描(PET)示踪剂的无监督单主体网络训练方案;2)重建过程中实时生成的训练数据;3)利用伪4-D(即2.5空间维数+0.5时间维数或2.5 sd +0.5 td)补丁在核化OSEM子集估计之间最小化$L_{2}$损失,从而提供固有的时空一致性;4)最后的调整步骤,最大限度地减少核矩阵内网络输出的过度平滑。使用GE SIGNA PET/MR上获得的对比幻影、人[18F]FDG和[11C]RAC数据进行评估。提出的DL HYPR4D核方法在对比度恢复与噪声方面优于标准HYPR4D核方法以及TOF-OSEM和TOF-BSREM (Q.Clear)。在保持低噪声体素级tac的同时,提出的最终调谐将由于4毫米目标结构内的过度平滑而导致的低估偏差从~15%降低到~2%。此外,所提出的无监督深度学习辅助重建在沿tac和动力学模型拟合的偏差减少方面也优于有监督的深度学习版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Development and Initial Evaluation of 3D-printed High Resolution Brain Phantom for PET. 2025 Index IEEE Transactions on Radiation and Plasma Medical Sciences Table of Contents Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society IEEE DataPort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1