{"title":"A study on antimicrobial activity of lysine-like peptoids for the development of new antimicrobials","authors":"Jagath C. Kasturiarachchi","doi":"10.1007/s00203-024-04227-6","DOIUrl":null,"url":null,"abstract":"<div><p>The development of new medicines with unique methods of antimicrobial action is desperately needed due to the emerging multidrug-resistant bacteria, such as methicillin-resistant <i>Staphylococcus aureus</i>. Therefore, antimicrobial peptoids have emerged as potential new antimicrobials. Thirteen peptoid analogues have been designed and synthesized via solid phase synthesis. These peptoids have undergone a biological analysis to determine the structure-activity relationships that define their antibacterial activity. Each peptoid is composed of nine repeating N-substituted glycine monomers (9-mer). The monomer units were synthesized with three distinct alkyl side chain lengths: four-carbon butyl monomers, six-carbon hexyl monomers, and eight-carbon octyl monomers. Out of 12 different peptoids, only one peptoid called Tosyl-Octyl-Peptoid (TOP) demonstrated significant broad-spectrum bactericidal activity. TOP kills bacteria under non-dividing and dividing conditions. The Minimum Inhibitory Concentrations values of TOP for <i>Staphylococcus epidermidis</i>, <i>Escherichia coli</i> and <i>Klebsiella</i> were 20 µM, whereas Methicillin-resistant <i>Staphylococcus aureus</i> and Methicillin-sensitive <i>Staphylococcus aureus</i> were 40 µM. The highest MIC values were observed for <i>Pseudomonas aeruginosa</i> at 80 µM. The selectivity ratio was calculated, by dividing the 10% haemolysis activity (5 mM) by the median of the MIC (50 µM) yielding a selective ratio for TOP as 100. This selective ratio is well above previously reported peptidomimetics selective ratio of around 20. TOP shows broad-spectrum bactericidal action in both dividing and non-dividing bacteria in co-culture systems and intracellular bacterial killing activity. These results add new information about the antimicrobial peptoids and aid in the future design of synthetic peptoids with increased therapeutic potential.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04227-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of new medicines with unique methods of antimicrobial action is desperately needed due to the emerging multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus. Therefore, antimicrobial peptoids have emerged as potential new antimicrobials. Thirteen peptoid analogues have been designed and synthesized via solid phase synthesis. These peptoids have undergone a biological analysis to determine the structure-activity relationships that define their antibacterial activity. Each peptoid is composed of nine repeating N-substituted glycine monomers (9-mer). The monomer units were synthesized with three distinct alkyl side chain lengths: four-carbon butyl monomers, six-carbon hexyl monomers, and eight-carbon octyl monomers. Out of 12 different peptoids, only one peptoid called Tosyl-Octyl-Peptoid (TOP) demonstrated significant broad-spectrum bactericidal activity. TOP kills bacteria under non-dividing and dividing conditions. The Minimum Inhibitory Concentrations values of TOP for Staphylococcus epidermidis, Escherichia coli and Klebsiella were 20 µM, whereas Methicillin-resistant Staphylococcus aureus and Methicillin-sensitive Staphylococcus aureus were 40 µM. The highest MIC values were observed for Pseudomonas aeruginosa at 80 µM. The selectivity ratio was calculated, by dividing the 10% haemolysis activity (5 mM) by the median of the MIC (50 µM) yielding a selective ratio for TOP as 100. This selective ratio is well above previously reported peptidomimetics selective ratio of around 20. TOP shows broad-spectrum bactericidal action in both dividing and non-dividing bacteria in co-culture systems and intracellular bacterial killing activity. These results add new information about the antimicrobial peptoids and aid in the future design of synthetic peptoids with increased therapeutic potential.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.