Glow-in-the-dark: Exploring the opportunities and challenges of bioluminescent plankton as a natural light source

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Pub Date : 2024-11-10 DOI:10.1007/s11708-024-0966-0
Siti Hamisah Tapsir, Siew Moi Phang, Nor Aieni Mokhtar, Swee Sen Teo, Lai Huat Lim, Kah Hou Teng, Swee Pin Yeap
{"title":"Glow-in-the-dark: Exploring the opportunities and challenges of bioluminescent plankton as a natural light source","authors":"Siti Hamisah Tapsir,&nbsp;Siew Moi Phang,&nbsp;Nor Aieni Mokhtar,&nbsp;Swee Sen Teo,&nbsp;Lai Huat Lim,&nbsp;Kah Hou Teng,&nbsp;Swee Pin Yeap","doi":"10.1007/s11708-024-0966-0","DOIUrl":null,"url":null,"abstract":"<div><p>Bioluminescent plankton are marine organisms capable of emitting visible light through chemical reactions in their bodies. This unique biochemical trait is attributed to a luciferin-luciferase reaction, which produces a striking blue light. This fascinating phenomenon, often referred to as the “blue tears” effect, has become a major attraction for tourist attractions in many countries. Since their discovery, most investigations related to these marine organisms have primarily focused on the fields of biology, ecology, oceanography, and microbiology. However, there has been limited to almost no study of their potential applications in the area of energy or lighting. This paper provides viewpoints on the opportunities for using these marine organisms and their light-emitting characteristics as an energy-efficient and environmentally friendly lighting solution, rather than just as a tourist attraction. Additionally, it addresses the challenges associated with sustaining the growth of bioluminescent plankton collected from the marine environment, the importance of establishing suitable protocols for in-house cultivation, challenges in stimulating the light-production at desired time, constraint imposed by the circadian rhythm, the toxicity of certain bioluminescent plankton, and the capacity of their luminous intensity.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"730 - 734"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0966-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Bioluminescent plankton are marine organisms capable of emitting visible light through chemical reactions in their bodies. This unique biochemical trait is attributed to a luciferin-luciferase reaction, which produces a striking blue light. This fascinating phenomenon, often referred to as the “blue tears” effect, has become a major attraction for tourist attractions in many countries. Since their discovery, most investigations related to these marine organisms have primarily focused on the fields of biology, ecology, oceanography, and microbiology. However, there has been limited to almost no study of their potential applications in the area of energy or lighting. This paper provides viewpoints on the opportunities for using these marine organisms and their light-emitting characteristics as an energy-efficient and environmentally friendly lighting solution, rather than just as a tourist attraction. Additionally, it addresses the challenges associated with sustaining the growth of bioluminescent plankton collected from the marine environment, the importance of establishing suitable protocols for in-house cultivation, challenges in stimulating the light-production at desired time, constraint imposed by the circadian rhythm, the toxicity of certain bioluminescent plankton, and the capacity of their luminous intensity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在黑暗中发光:探索生物发光浮游生物作为自然光源的机遇和挑战
发光浮游生物是一种能够通过体内化学反应发出可见光的海洋生物。这种独特的生化特性归因于荧光素-荧光素酶反应,该反应产生引人注目的蓝光。这种迷人的现象,通常被称为“蓝眼泪”效应,已成为许多国家旅游景点的主要吸引力。自从它们被发现以来,大多数与这些海洋生物有关的研究主要集中在生物学、生态学、海洋学和微生物学领域。然而,对它们在能源或照明领域的潜在应用的研究几乎没有。本文提供了利用这些海洋生物及其发光特性作为节能和环保照明解决方案的机会的观点,而不仅仅是作为一个旅游景点。此外,它还解决了与维持从海洋环境中收集的生物发光浮游生物的生长有关的挑战,建立合适的室内培养方案的重要性,在所需时间刺激发光的挑战,昼夜节律的限制,某些生物发光浮游生物的毒性以及它们发光强度的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
期刊最新文献
Climate change and innovative paths to a more sustainable future Glow-in-the-dark: Exploring the opportunities and challenges of bioluminescent plankton as a natural light source Core-membrane microstructured amine-modified mesoporous biochar templated via ZnCl2/KCl for CO2 capture Performance analysis of a novel medium temperature compressed air energy storage system based on inverter-driven compressor pressure regulation Impact of bimetallic synergies on Mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1