{"title":"SnO2/SnS2 Heterojunction with Mesoporous Structure for Improved Photocatalytic Degradation of Sulfonamide Antibiotics","authors":"Zhanyu Li, Pengyu Li, Yike Fang, Bingxu Chen, Danfeng He, Wei Sun, Guohui Li, Yuanyuan Sun","doi":"10.1007/s10562-024-04883-9","DOIUrl":null,"url":null,"abstract":"<div><p>The SnO<sub>2</sub>/SnS<sub>2</sub> composite photocatalyst with mesoporous structure and Type-II heterojunction was successfully constructed, and sulfonamide antibiotics were used as the target degrader to explore the effects of mesoporous and heterojunction structures in SnO<sub>2</sub>/SnS<sub>2</sub> on the photocatalytic degradation activity under visible light irradiation. The results show that SnO<sub>2</sub>/SnS<sub>2</sub> obtained by hydrothermal reaction at 180 °C presents a unique flower-like spherical structure with high crystallinity and a particle size of about 5 μm, a large mesoporous pore size of 12.33 nm provided abundant ion or molecular channels and a relatively high specific surface area of 50 m<sup>2</sup><b>·</b>g<sup>− 1</sup> provided abundant active sites. In addition, SnO<sub>2</sub>/SnS<sub>2</sub> has low fluorescence intensity, indicating that the Type-II heterojunction structure formed promoted charge transfer, resulting in a higher separation efficiency of photo-generated charges (h<sup>+</sup>/e<sup>−</sup>). It is worth noting that SnO<sub>2</sub>/SnS<sub>2</sub> has a strong light response at the wavelength of 200–800 nm, and degradation rate of SnO<sub>2</sub>/SnS<sub>2</sub> was 1.7 times that of SnO<sub>2</sub> and 1.5 times that of SnS<sub>2</sub>, after photocatalytic reaction time of 210 min, respectively. It is benefitting from that the Type-II heterojunction structure formed by the coupling of mesoporous SnO<sub>2</sub> and SnS<sub>2</sub> has a synergistic effect, which reduces the band gap and improves the photocatalytic activity. Furthermore, this study revealed that the reaction rate constant of SnO<sub>2</sub>/SnS<sub>2</sub> photocatalytic degradation of sulfonamides increased with the increase of temperature, which belonged to the zero-order reaction with the apparent activation energy of <span>\\(\\:1.201 \\times 10^{4}\\)</span>J·mol<sup>− 1</sup>. Finally, the photocatalytic stability and reusability of SnO<sub>2</sub>/SnS<sub>2</sub> were further confirmed through 5 cycles of photocatalytic degradation experiments. This study provides new insights for the development of heterojunction photocatalysts with mesoporous structure, and provide new ideas for photocatalytic technology in antibiotic degradation.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04883-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The SnO2/SnS2 composite photocatalyst with mesoporous structure and Type-II heterojunction was successfully constructed, and sulfonamide antibiotics were used as the target degrader to explore the effects of mesoporous and heterojunction structures in SnO2/SnS2 on the photocatalytic degradation activity under visible light irradiation. The results show that SnO2/SnS2 obtained by hydrothermal reaction at 180 °C presents a unique flower-like spherical structure with high crystallinity and a particle size of about 5 μm, a large mesoporous pore size of 12.33 nm provided abundant ion or molecular channels and a relatively high specific surface area of 50 m2·g− 1 provided abundant active sites. In addition, SnO2/SnS2 has low fluorescence intensity, indicating that the Type-II heterojunction structure formed promoted charge transfer, resulting in a higher separation efficiency of photo-generated charges (h+/e−). It is worth noting that SnO2/SnS2 has a strong light response at the wavelength of 200–800 nm, and degradation rate of SnO2/SnS2 was 1.7 times that of SnO2 and 1.5 times that of SnS2, after photocatalytic reaction time of 210 min, respectively. It is benefitting from that the Type-II heterojunction structure formed by the coupling of mesoporous SnO2 and SnS2 has a synergistic effect, which reduces the band gap and improves the photocatalytic activity. Furthermore, this study revealed that the reaction rate constant of SnO2/SnS2 photocatalytic degradation of sulfonamides increased with the increase of temperature, which belonged to the zero-order reaction with the apparent activation energy of \(\:1.201 \times 10^{4}\)J·mol− 1. Finally, the photocatalytic stability and reusability of SnO2/SnS2 were further confirmed through 5 cycles of photocatalytic degradation experiments. This study provides new insights for the development of heterojunction photocatalysts with mesoporous structure, and provide new ideas for photocatalytic technology in antibiotic degradation.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.