CO2 Hydrogenation to Produce Methanol over Fe, Ga and Mo Modified ZnCu-MOF and ZnCuAl-LDH Composite Catalysts

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2025-01-03 DOI:10.1007/s10562-024-04910-9
Ziyuan Li, Mingsheng Luo, Zhi Yang, Xiaoteng Cui, Wenshuai Yang, Lingman Xia, Changke Shao, Roshni Rahman
{"title":"CO2 Hydrogenation to Produce Methanol over Fe, Ga and Mo Modified ZnCu-MOF and ZnCuAl-LDH Composite Catalysts","authors":"Ziyuan Li,&nbsp;Mingsheng Luo,&nbsp;Zhi Yang,&nbsp;Xiaoteng Cui,&nbsp;Wenshuai Yang,&nbsp;Lingman Xia,&nbsp;Changke Shao,&nbsp;Roshni Rahman","doi":"10.1007/s10562-024-04910-9","DOIUrl":null,"url":null,"abstract":"<div><p>To effectively mitigate the global warming issue, it is crucial to develop advanced technologies that can significantly reduce carbon dioxide emissions. CO<sub>2</sub> hydrogenation for methanol synthesis is increasingly recognized as a promising chemical approach for the green-house gas utilization. In this study, we present a highly active, selective and stable Mo modified ZnCu-MOF and ZnCuAl-LDH composite catalysts, which achieves 18% CO<sub>2</sub> conversion and 70% methanol selectivity at 230 °C, 3.0 MPa at a space velocity of 3600 mL·g<sub>cat</sub><sup>−1</sup>·h<sup>−1</sup>. Furthermore, after 140 h of operation, the catalyst demonstrates superior durability. In-situ DRIFT results reveal that this CO<sub>2</sub> hydrogenation reaction over the ZnCu-MOF and ZnCuAl-LDH composite catalysts proceeds through key intermediate formate species, ultimately leading to the methanol formation. In contrast, the Mo-modified catalysts facilitate the CO insertion reaction (CO<sub>2</sub> → CO*, CO* + *CH<sub>x</sub> → CH<sub>3</sub>OH), thereby enhancing the methanol yield.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04910-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To effectively mitigate the global warming issue, it is crucial to develop advanced technologies that can significantly reduce carbon dioxide emissions. CO2 hydrogenation for methanol synthesis is increasingly recognized as a promising chemical approach for the green-house gas utilization. In this study, we present a highly active, selective and stable Mo modified ZnCu-MOF and ZnCuAl-LDH composite catalysts, which achieves 18% CO2 conversion and 70% methanol selectivity at 230 °C, 3.0 MPa at a space velocity of 3600 mL·gcat−1·h−1. Furthermore, after 140 h of operation, the catalyst demonstrates superior durability. In-situ DRIFT results reveal that this CO2 hydrogenation reaction over the ZnCu-MOF and ZnCuAl-LDH composite catalysts proceeds through key intermediate formate species, ultimately leading to the methanol formation. In contrast, the Mo-modified catalysts facilitate the CO insertion reaction (CO2 → CO*, CO* + *CHx → CH3OH), thereby enhancing the methanol yield.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe、Ga和Mo改性ZnCu-MOF和ZnCuAl-LDH复合催化剂催化CO2加氢制甲醇
为了有效地缓解全球变暖问题,开发能够显著减少二氧化碳排放的先进技术至关重要。二氧化碳加氢合成甲醇是一种很有前途的温室气体利用化学方法。在本研究中,我们提出了一种高活性、选择性和稳定性的Mo改性ZnCu-MOF和ZnCuAl-LDH复合催化剂,在230°C、3.0 MPa、3600 mL·gcat−1·h−1空速下,实现了18%的CO2转化率和70%的甲醇选择性。此外,经过140 h的操作,催化剂表现出优异的耐久性。原位漂移结果表明,在ZnCu-MOF和ZnCuAl-LDH复合催化剂上,CO2加氢反应通过关键的中间甲酸酯物质进行,最终形成甲醇。而mo改性催化剂有利于CO插入反应(CO2→CO*, CO* + *CHx→CH3OH),从而提高甲醇收率。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Na2CO3
阿拉丁
(NH4)Mo7O24·4H2O
阿拉丁
Fe(NO3)3·9H2O
阿拉丁
Al(NO3)3·9H2O
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Liquid Phase Nitration of Benzene to Nitrobenzene Using a Mesoporous MoO3/Nb2O5 Nanocatalyst Single-Atom Catalysis for CO Combustion in Automotive Exhaust: A DFT Study Enhanced Catalytic Performance of Egyptian Red Clay Modified with Zirconia Nanoparticles for Methanol Dehydration to Dimethyl Ether g-C3N4 Enhanced Fe3+/ Fe2+ Cycling to Activate PMS for Pharmaceuticals Degradation Under Solar Irradiation Ru Distribution and Activity of Ru/C Catalyst for Continuous Hydrogenation of 3,5-dimethylpyridine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1