Key enzymatic activities and metabolic pathway dynamics in acidogenic fermentation of food waste: Impact of pH and organic loading rate.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2024-12-31 DOI:10.1016/j.jenvman.2024.123983
Yonghui Zheng, Penghui Chen, Enzhen Wang, Yuying Ren, Xueling Ran, Bowen Li, Renjie Dong, Jianbin Guo
{"title":"Key enzymatic activities and metabolic pathway dynamics in acidogenic fermentation of food waste: Impact of pH and organic loading rate.","authors":"Yonghui Zheng, Penghui Chen, Enzhen Wang, Yuying Ren, Xueling Ran, Bowen Li, Renjie Dong, Jianbin Guo","doi":"10.1016/j.jenvman.2024.123983","DOIUrl":null,"url":null,"abstract":"<p><p>Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2. Results demonstrated pH significantly affected fermentation types by influencing key enzyme activities, while organic loading rate (OLR) primarily affected the yield without altering metabolic pathway. The maximum VFAs production was achieved at pH 6.0 and OLR of 15.0 g-VS/L/d as a result of Glycolysis and Pyruvate Metabolism were enhanced. Meanwhile, butyric acid was always dominant product, attributed to the enhanced activity of butyryl-CoA dehydrogenasedue. Furthermore, Lactobacillus enrichment and lactate dehydrogenase upregulation promoted lactate-type fermentation under without pH control (3.8), resulting in an average yield of lactic acid was 7.84 g/L. When the pH was raised from 3.8 to 5.0,downregulation of lactate dehydrogenase and upregulation of acetate kinase shifted the fermentation to acetate-type. This study provides a deeper understanding of how does process controls influence the metabolic pathways and key functional enzymes.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"123983"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123983","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2. Results demonstrated pH significantly affected fermentation types by influencing key enzyme activities, while organic loading rate (OLR) primarily affected the yield without altering metabolic pathway. The maximum VFAs production was achieved at pH 6.0 and OLR of 15.0 g-VS/L/d as a result of Glycolysis and Pyruvate Metabolism were enhanced. Meanwhile, butyric acid was always dominant product, attributed to the enhanced activity of butyryl-CoA dehydrogenasedue. Furthermore, Lactobacillus enrichment and lactate dehydrogenase upregulation promoted lactate-type fermentation under without pH control (3.8), resulting in an average yield of lactic acid was 7.84 g/L. When the pH was raised from 3.8 to 5.0,downregulation of lactate dehydrogenase and upregulation of acetate kinase shifted the fermentation to acetate-type. This study provides a deeper understanding of how does process controls influence the metabolic pathways and key functional enzymes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Residual effects of biochar and nano-modified biochar on growth and physiology under saline environment in two different genotype of Oryza sativa L. Root-associated functional microbiome endemism facilitates heavy metal resilience and nutrient poor adaptation in native plants under serpentine driven edaphic challenges. The feasibility of batch-wise polyester degradation and recycling using recombinant Escherichia coli expressing PHB depolymerase (PhaZCma). Water level fluctuation regulated the effect of bacterial community on ecosystem multifunctionality in Poyang Lake wetland. A closer look at housing market actors' dynamics in responses to sea level rise in Miami-Dade, Florida.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1