Machine Learning for Reaction Performance Prediction in Allylic Substitution Enhanced by Automatic Extraction of a Substrate-Aware Descriptor.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-01-02 DOI:10.1021/acs.jcim.4c02120
Gufeng Yu, Xi Wang, Yichong Luo, Guanlin Li, Rui Ding, Runhan Shi, Xiaohong Huo, Yang Yang
{"title":"Machine Learning for Reaction Performance Prediction in Allylic Substitution Enhanced by Automatic Extraction of a Substrate-Aware Descriptor.","authors":"Gufeng Yu, Xi Wang, Yichong Luo, Guanlin Li, Rui Ding, Runhan Shi, Xiaohong Huo, Yang Yang","doi":"10.1021/acs.jcim.4c02120","DOIUrl":null,"url":null,"abstract":"<p><p>Despite remarkable advancements in the organic synthesis field facilitated by the use of machine learning (ML) techniques, the prediction of reaction outcomes, including yield estimation, catalyst optimization, and mechanism identification, continues to pose a significant challenge. This challenge arises primarily from the lack of appropriate descriptors capable of retaining crucial molecular information for accurate prediction while also ensuring computational efficiency. This study presents a successful application of ML for predicting the performance of Ir-catalyzed allylic substitution reactions. We introduce SubA, an innovative substrate-aware descriptor that is inspired by the fact that specific atoms or motifs in reactants drive the reaction outcomes. By employing graph matching algorithms for molecular backbone identification and incorporating atomic and molecular properties derived from density functional theory calculations, SubA extracts essential information at both the atomic level and the molecular level. Compared to four mainstream descriptors, SubA achieves reduced dimensionality and enhanced prediction accuracy with over 2% mean absolute error reduction in both random and scaffold splitting evaluations. It also demonstrates better generalization when confronted with previously unreported substrate combinations in extended experiments. Furthermore, an interpretable analysis of SubA shows that the predictor focuses on key molecular and atomic features, offering insights into reaction mechanisms.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02120","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite remarkable advancements in the organic synthesis field facilitated by the use of machine learning (ML) techniques, the prediction of reaction outcomes, including yield estimation, catalyst optimization, and mechanism identification, continues to pose a significant challenge. This challenge arises primarily from the lack of appropriate descriptors capable of retaining crucial molecular information for accurate prediction while also ensuring computational efficiency. This study presents a successful application of ML for predicting the performance of Ir-catalyzed allylic substitution reactions. We introduce SubA, an innovative substrate-aware descriptor that is inspired by the fact that specific atoms or motifs in reactants drive the reaction outcomes. By employing graph matching algorithms for molecular backbone identification and incorporating atomic and molecular properties derived from density functional theory calculations, SubA extracts essential information at both the atomic level and the molecular level. Compared to four mainstream descriptors, SubA achieves reduced dimensionality and enhanced prediction accuracy with over 2% mean absolute error reduction in both random and scaffold splitting evaluations. It also demonstrates better generalization when confronted with previously unreported substrate combinations in extended experiments. Furthermore, an interpretable analysis of SubA shows that the predictor focuses on key molecular and atomic features, offering insights into reaction mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
End-Point Affinity Estimation of Galectin Ligands by Classical and Semiempirical Quantum Mechanical Potentials. ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects. Quick-and-Easy Validation of Protein-Ligand Binding Models Using Fragment-Based Semiempirical Quantum Chemistry. Machine Learning for Reaction Performance Prediction in Allylic Substitution Enhanced by Automatic Extraction of a Substrate-Aware Descriptor. Neighborhood Topology-Aware Knowledge Graph Learning and Microbial Preference Inferring for Drug-Microbe Association Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1