Weizhe Zheng, Jianing Wang, Xiaoyue Yao, Siting Li, Zhou Chen, Bing Qi, Aijin Ma and Yingmin Jia
{"title":"Preparation, structural characterisation, absorption and calcium transport studies of walnut peptide calcium chelate","authors":"Weizhe Zheng, Jianing Wang, Xiaoyue Yao, Siting Li, Zhou Chen, Bing Qi, Aijin Ma and Yingmin Jia","doi":"10.1039/D4FO04403G","DOIUrl":null,"url":null,"abstract":"<p >In this study, a walnut peptide (WP) with calcium-binding capacity was prepared using a combination of alkalase and neutrase. The conditions for the preparation of walnut peptide calcium chelate (WP-Ca) were optimised (a peptide/calcium chloride ratio of 1 : 4 for 70 min at 50 °C and pH 9.5). Fractionation <em>via</em> ultrafiltration showed that peptides with a size <1 kDa demonstrated the highest calcium binding capacity at 106.4 mg g<small><sup>−1</sup></small>. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, zeta potential and other analyses were performed to characterize WP-Ca. The combined results indicate that calcium binds by interacting with the carboxyl oxygen, hydroxyl oxygen and amino nitrogen of walnut peptides to form WP-Ca. The chelate showed good gastrointestinal stability. Furthermore, using the Caco-2 cell monolayer model, WP-Ca was shown to significantly increase calcium bioavailability and effectively reverse the inhibitory effects of dietary factors (phytates and phosphates) on calcium absorption. The results provide a scientific basis for developing novel calcium supplements and high-value walnut utilisation.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 2","pages":" 461-474"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo04403g","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a walnut peptide (WP) with calcium-binding capacity was prepared using a combination of alkalase and neutrase. The conditions for the preparation of walnut peptide calcium chelate (WP-Ca) were optimised (a peptide/calcium chloride ratio of 1 : 4 for 70 min at 50 °C and pH 9.5). Fractionation via ultrafiltration showed that peptides with a size <1 kDa demonstrated the highest calcium binding capacity at 106.4 mg g−1. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, zeta potential and other analyses were performed to characterize WP-Ca. The combined results indicate that calcium binds by interacting with the carboxyl oxygen, hydroxyl oxygen and amino nitrogen of walnut peptides to form WP-Ca. The chelate showed good gastrointestinal stability. Furthermore, using the Caco-2 cell monolayer model, WP-Ca was shown to significantly increase calcium bioavailability and effectively reverse the inhibitory effects of dietary factors (phytates and phosphates) on calcium absorption. The results provide a scientific basis for developing novel calcium supplements and high-value walnut utilisation.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.