Topology-based protein classification: A deep learning approach

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-02-01 DOI:10.1016/j.bbrc.2024.151240
Aliye Sadat Hashemi, Iosif I. Vaisman
{"title":"Topology-based protein classification: A deep learning approach","authors":"Aliye Sadat Hashemi,&nbsp;Iosif I. Vaisman","doi":"10.1016/j.bbrc.2024.151240","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing Artificial Intelligence (AI) in computational biology techniques could offer significant advantages in alleviating the growing workloads faced by structural biologists, especially with the emergence of big data. In this study, we employed Delaunay tessellation as a promising method to obtain the overall structural topology of proteins. Subsequently, we developed multi-class deep neural network models to classify protein superfamilies based on their local topology. Our models achieved a test accuracy of approximately 0.92 in classifying proteins into 18 well-populated superfamilies. We believe that the results of this study hold substantial value since, to the best of our knowledge, no previous studies have reported the utilization of protein topological data for protein classification through deep learning and Delaunay tessellation.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"746 ","pages":"Article 151240"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24017765","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing Artificial Intelligence (AI) in computational biology techniques could offer significant advantages in alleviating the growing workloads faced by structural biologists, especially with the emergence of big data. In this study, we employed Delaunay tessellation as a promising method to obtain the overall structural topology of proteins. Subsequently, we developed multi-class deep neural network models to classify protein superfamilies based on their local topology. Our models achieved a test accuracy of approximately 0.92 in classifying proteins into 18 well-populated superfamilies. We believe that the results of this study hold substantial value since, to the best of our knowledge, no previous studies have reported the utilization of protein topological data for protein classification through deep learning and Delaunay tessellation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拓扑的蛋白质分类:一种深度学习方法。
在计算生物学技术中利用人工智能(AI)可以为减轻结构生物学家面临的日益增长的工作量提供显着的优势,特别是随着大数据的出现。在这项研究中,我们采用Delaunay镶嵌作为一种有前途的方法来获得蛋白质的整体结构拓扑。随后,我们开发了基于局部拓扑结构的多类深度神经网络模型来对蛋白质超家族进行分类。我们的模型在将蛋白质分类为18个人口稠密的超家族方面取得了约0.92的测试精度。我们认为,这项研究的结果具有很大的价值,因为据我们所知,之前没有研究报道过通过深度学习和Delaunay镶嵌利用蛋白质拓扑数据进行蛋白质分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Editorial Board PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis Itaconate drives pro-inflammatory responses through proteasomal degradation of GLO1 ATG9 promotes autophagosome formation through interaction with LC3 Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1