Maria Gerusa Brito Aragão, Carolina Patricia Aires, Silmara Aparecida Milori Corona, Xuesong He
{"title":"Effects of epigallocatechin gallate on the development of matrix-rich <i>Streptococcus mutans</i> biofilm.","authors":"Maria Gerusa Brito Aragão, Carolina Patricia Aires, Silmara Aparecida Milori Corona, Xuesong He","doi":"10.1080/08927014.2024.2446932","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we evaluated the impact of Epigalocatechin-3-gallate (EGCG) on <i>S. mutans</i> biofilm development for 24 and 46 h using high-resolution confocal laser scanning microscopy. EGCG treatment led to the formation of interspaced exopolysaccharide (EPS)-microcolony complexes unevenly distributed on the surface of hydroxyapatite disc, forming a thinner and less complex biofilm structure with significantly reduced biomass, matrix volume, and thickness compared to the NaCl treated group (negative control). At 46 h, the biofilm of the EGCG-treatment group failed to form the bacterial-EPS superstructures which is characteristic of the biofilm in the negative control group. EGCG treatment seems to significantly delay biofilm development, with the 46 h biofilm in the EGCG treatment group resembling the negative control group at 24 h. EGCG topical treatments impaired <i>S. mutans</i> biofilm initial growth and maturation, suggesting its potential to be used as a preventive agent against dental caries.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-10"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2446932","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we evaluated the impact of Epigalocatechin-3-gallate (EGCG) on S. mutans biofilm development for 24 and 46 h using high-resolution confocal laser scanning microscopy. EGCG treatment led to the formation of interspaced exopolysaccharide (EPS)-microcolony complexes unevenly distributed on the surface of hydroxyapatite disc, forming a thinner and less complex biofilm structure with significantly reduced biomass, matrix volume, and thickness compared to the NaCl treated group (negative control). At 46 h, the biofilm of the EGCG-treatment group failed to form the bacterial-EPS superstructures which is characteristic of the biofilm in the negative control group. EGCG treatment seems to significantly delay biofilm development, with the 46 h biofilm in the EGCG treatment group resembling the negative control group at 24 h. EGCG topical treatments impaired S. mutans biofilm initial growth and maturation, suggesting its potential to be used as a preventive agent against dental caries.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.