DPYD genotype should be extended to rare variants: report on two cases of phenotype / genotype discrepancy.

IF 2.7 4区 医学 Q3 ONCOLOGY Cancer Chemotherapy and Pharmacology Pub Date : 2025-01-02 DOI:10.1007/s00280-024-04738-5
Paul Vilquin, Yves Medard, Fabienne Thomas, Lauriane Goldwirt, Luis Teixeira, Samia Mourah, Evelyne Jacqz-Aigrain
{"title":"DPYD genotype should be extended to rare variants: report on two cases of phenotype / genotype discrepancy.","authors":"Paul Vilquin, Yves Medard, Fabienne Thomas, Lauriane Goldwirt, Luis Teixeira, Samia Mourah, Evelyne Jacqz-Aigrain","doi":"10.1007/s00280-024-04738-5","DOIUrl":null,"url":null,"abstract":"<p><p>The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified. Different approaches have been developed for screening DPD-deficiency, including DPYD genotyping and phenotyping. Plasma uracil ([U]) and dihydrouracil ([UH<sub>2</sub>]) concentrations are routinely used as surrogate markers for systemic DPD activity: [U] ≥ 16 ng/ml and < 150 ng/ml, and [U] ≥ 150 ng/mL indicate partial and complete DPD deficient phenotype, respectively, while values of 5 or 10 for [UH2]/([U] ratio are often cited. Four clinically relevant DPYD defective variants (DPYD*13, DPYD*2A, p.Asp949Val and haplotype B3), are targeted in genetic testing via PCR. In practice, pretreatment [U], alone or combined with these 4 recommended DPYD alleles guides individual dosage selection, though this approach has limitations. This is illustrated by two cases showing discrepancy between DPD deficient phenotype and normal standard genotype. In these two cases, DPYD exome sequencing with Next Generation Sequencing identified rare inactive variants, establishing concordance between phenotype and genotype. In patient 1, [U] levels of 21.1 and 25.5 ng/mL, indicated partial deficiency though the targeted genotype was normal and 5FU dose was adjusted based on the phenotype. In patient 2, [U] levels of 16.2 and 15.2 ng/mL were near the 16 ng/ml threshold. With a normal genotype, he as considered non-deficient as targeted genotype was normal and the standard dose was administered. These two cases underscore the need to pair DPD phenotyping with whole DPYD gene sequencing, due to the frequent discrepancies between these pharmacogenetic tools, the burden of rare variants and ethnic differences in variant frequencies.</p>","PeriodicalId":9556,"journal":{"name":"Cancer Chemotherapy and Pharmacology","volume":"95 1","pages":"16"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Chemotherapy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00280-024-04738-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified. Different approaches have been developed for screening DPD-deficiency, including DPYD genotyping and phenotyping. Plasma uracil ([U]) and dihydrouracil ([UH2]) concentrations are routinely used as surrogate markers for systemic DPD activity: [U] ≥ 16 ng/ml and < 150 ng/ml, and [U] ≥ 150 ng/mL indicate partial and complete DPD deficient phenotype, respectively, while values of 5 or 10 for [UH2]/([U] ratio are often cited. Four clinically relevant DPYD defective variants (DPYD*13, DPYD*2A, p.Asp949Val and haplotype B3), are targeted in genetic testing via PCR. In practice, pretreatment [U], alone or combined with these 4 recommended DPYD alleles guides individual dosage selection, though this approach has limitations. This is illustrated by two cases showing discrepancy between DPD deficient phenotype and normal standard genotype. In these two cases, DPYD exome sequencing with Next Generation Sequencing identified rare inactive variants, establishing concordance between phenotype and genotype. In patient 1, [U] levels of 21.1 and 25.5 ng/mL, indicated partial deficiency though the targeted genotype was normal and 5FU dose was adjusted based on the phenotype. In patient 2, [U] levels of 16.2 and 15.2 ng/mL were near the 16 ng/ml threshold. With a normal genotype, he as considered non-deficient as targeted genotype was normal and the standard dose was administered. These two cases underscore the need to pair DPD phenotyping with whole DPYD gene sequencing, due to the frequent discrepancies between these pharmacogenetic tools, the burden of rare variants and ethnic differences in variant frequencies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DPYD基因型应扩展到罕见变异:报告两例表型/基因型差异。
二氢嘧啶脱氢酶(DPD)是包括5氟尿嘧啶(5FU)和卡培他滨在内的氟嘧啶的主要分解代谢途径。在接受标准剂量的5FU或卡培他滨治疗的完全DPD缺乏症癌症患者中有致死毒性的报道。DPD由药物基因DPYD编码,其中已有200多种变体被发现。不同的方法已经开发用于筛选DPYD缺乏症,包括DPYD基因分型和表型分型。血浆尿嘧啶([U])和二氢尿嘧啶([UH2])浓度通常被用作全身DPD活性的替代标记物:[U]≥16 ng/ml和
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
3.30%
发文量
116
审稿时长
2.5 months
期刊介绍: Addressing a wide range of pharmacologic and oncologic concerns on both experimental and clinical levels, Cancer Chemotherapy and Pharmacology is an eminent journal in the field. The primary focus in this rapid publication medium is on new anticancer agents, their experimental screening, preclinical toxicology and pharmacology, single and combined drug administration modalities, and clinical phase I, II and III trials. It is essential reading for pharmacologists and oncologists giving results recorded in the following areas: clinical toxicology, pharmacokinetics, pharmacodynamics, drug interactions, and indications for chemotherapy in cancer treatment strategy.
期刊最新文献
HMGB1 assists the predictive value of tumor PD-L1 expression for the efficacy of anti-PD-1/PD-L1 antibody in NSCLC. Lipidomic profiling of plasma from patients with multiple myeloma receiving bortezomib: an exploratory biomarker study of JCOG1105 (JCOG1105A1). Phase I trial of ATR inhibitor elimusertib with FOLFIRI in advanced or metastatic gastrointestinal malignancies (ETCTN 10406). Pharmacokinetic exposure and treatment outcomes of lenvatinib in patients with renal cell carcinoma and differentiated thyroid carcinoma. Population pharmacokinetics and exposure-response analysis of durvalumab in combination with gemcitabine and cisplatin in patients with advanced biliary tract cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1