Latifa Bakiri, Mélanie Tichet, Carolina Marques, Martin K Thomsen, Elizabeth A Allen, Stefanie Stolzlechner, Ke Cheng, Kazuhiko Matsuoka, Massimo Squatrito, Douglas Hanahan, Erwin F Wagner
{"title":"A new effLuc/Kate dual reporter allele for tumor imaging in mice.","authors":"Latifa Bakiri, Mélanie Tichet, Carolina Marques, Martin K Thomsen, Elizabeth A Allen, Stefanie Stolzlechner, Ke Cheng, Kazuhiko Matsuoka, Massimo Squatrito, Douglas Hanahan, Erwin F Wagner","doi":"10.1242/dmm.052130","DOIUrl":null,"url":null,"abstract":"<p><p>Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases, such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo. Here, we report the generation of a dual reporter allele allowing simultaneous bioluminescence and fluorescence detection of cells that have undergone Cre-Lox recombination in mice. The single copy knock-in allele in the permissive collagen I locus was evaluated in the context of several cancer GEMMs, where Cre expression was achieved genetically or by ectopic virus-mediated delivery. The new reporter allele was also combined with gene-targeted alleles widely used in bone, prostate, brain and pancreas cancer research, as well as with alleles inserted into the commonly used Rosa26 and collagen I loci. This allele is, therefore, a useful addition to the portfolio of reporters to help advance preclinical research.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052130","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases, such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo. Here, we report the generation of a dual reporter allele allowing simultaneous bioluminescence and fluorescence detection of cells that have undergone Cre-Lox recombination in mice. The single copy knock-in allele in the permissive collagen I locus was evaluated in the context of several cancer GEMMs, where Cre expression was achieved genetically or by ectopic virus-mediated delivery. The new reporter allele was also combined with gene-targeted alleles widely used in bone, prostate, brain and pancreas cancer research, as well as with alleles inserted into the commonly used Rosa26 and collagen I loci. This allele is, therefore, a useful addition to the portfolio of reporters to help advance preclinical research.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.