{"title":"Modified Zuo Gui Wan Ameliorates Ovariectomy-Induced Osteoporosis in Rats by Regulating the SCFA-GPR41-p38MAPK Signaling Pathway.","authors":"Changheng Song, Qiqi Yan, Yujie Ma, Pei Li, Ying Yang, Yuhan Wang, Wenjie Li, Xinyu Wan, Yubo Li, Ruyuan Zhu, Haixia Liu, Zhiguo Zhang","doi":"10.2147/DDDT.S482965","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Modified Zuo Gui Wan (MZGW) was a combination of Zuo Gui Wan and red yeast rice used for treating osteoporosis (OP), but its mechanism remains unclear. We aimed to validate the anti-OP effect of MZGW and explore its underlying mechanism.</p><p><strong>Methods: </strong>An ovariectomy (OVX) rat model in vivo and a RANKL-induced osteoclasts (OCs) model in vitro were established. Key active ingredients in MZGW high dose (MZGW-H) group were detected by UPLC-MS/MS. Micro-CT scans and histomorphology analysis were performed in OVX rats. 16S rRNA gene sequencing was performed to investigate the relationship between the anti-OP effect of MZGW-H and intestinal flora. CCK-8 assay was applied to examine the optimal concentration of Modified Zuo Gui Wan drug serum (MZGW-DS) on osteoclasts. The qRT-PCR and Western blotting were utilized to explore the potential anti-OP pathway of MZGW, namely the SCFA-GPR41-p38MAPK signaling pathway. GPR41 was knocked down to further reverse to verify whether the pathway was the key pathway for MZGW-DS to exert its inhibitory effect on osteoclasts.</p><p><strong>Results: </strong>The three main blood components, Ferulic acid, L-Ascorbic acid and Riboflavin, were examined mainly by UPLC-MS/MS. 16S rRNA gene sequencing showed that MZGW-H changed the metabolism of SCFAs. In vivo studies verified that MZGW-H ameliorated microstructure damage, improved histological changes and reduced TRAP, BALP, and BGP in OVX rats by regulating the SCFA-GPR41-p38MAPK signaling pathway. CCK-8 revealed that 5% MZGW-DS group was the most optimal concentration of MZGW-DS to inhibit osteoclast differentiation. In vitro, MZGW-DS was better than peripheral blood concentration of SCFAs in inhibiting osteoclasts. After the knockout of GPR41, MZGW-DS could not inhibit the expression of osteoclast-related protein (CTSK and NFATc1) via SCFA-GPR41-p38MAPK signaling pathway.</p><p><strong>Conclusion: </strong>MZGW-H effectively ameliorates OVX-induced osteoporosis partially achieved by increasing SCFAs metabolism and modulating the SCFA-GPR41-p38MAPK signaling pathway.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"6359-6377"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S482965","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Modified Zuo Gui Wan (MZGW) was a combination of Zuo Gui Wan and red yeast rice used for treating osteoporosis (OP), but its mechanism remains unclear. We aimed to validate the anti-OP effect of MZGW and explore its underlying mechanism.
Methods: An ovariectomy (OVX) rat model in vivo and a RANKL-induced osteoclasts (OCs) model in vitro were established. Key active ingredients in MZGW high dose (MZGW-H) group were detected by UPLC-MS/MS. Micro-CT scans and histomorphology analysis were performed in OVX rats. 16S rRNA gene sequencing was performed to investigate the relationship between the anti-OP effect of MZGW-H and intestinal flora. CCK-8 assay was applied to examine the optimal concentration of Modified Zuo Gui Wan drug serum (MZGW-DS) on osteoclasts. The qRT-PCR and Western blotting were utilized to explore the potential anti-OP pathway of MZGW, namely the SCFA-GPR41-p38MAPK signaling pathway. GPR41 was knocked down to further reverse to verify whether the pathway was the key pathway for MZGW-DS to exert its inhibitory effect on osteoclasts.
Results: The three main blood components, Ferulic acid, L-Ascorbic acid and Riboflavin, were examined mainly by UPLC-MS/MS. 16S rRNA gene sequencing showed that MZGW-H changed the metabolism of SCFAs. In vivo studies verified that MZGW-H ameliorated microstructure damage, improved histological changes and reduced TRAP, BALP, and BGP in OVX rats by regulating the SCFA-GPR41-p38MAPK signaling pathway. CCK-8 revealed that 5% MZGW-DS group was the most optimal concentration of MZGW-DS to inhibit osteoclast differentiation. In vitro, MZGW-DS was better than peripheral blood concentration of SCFAs in inhibiting osteoclasts. After the knockout of GPR41, MZGW-DS could not inhibit the expression of osteoclast-related protein (CTSK and NFATc1) via SCFA-GPR41-p38MAPK signaling pathway.
Conclusion: MZGW-H effectively ameliorates OVX-induced osteoporosis partially achieved by increasing SCFAs metabolism and modulating the SCFA-GPR41-p38MAPK signaling pathway.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.