Abnormal c-Fos expression in TetTag mice containing fos-EGFP.

IF 2.6 3区 医学 Q2 BEHAVIORAL SCIENCES Frontiers in Behavioral Neuroscience Pub Date : 2024-12-17 eCollection Date: 2024-01-01 DOI:10.3389/fnbeh.2024.1500794
Jacob H Wilmot, Tracy L Warren, Cassiano R A F Diniz, Deger Carda, Marrisa M Lafreniere, Alex S Nord, Brian J Wiltgen
{"title":"Abnormal c-Fos expression in TetTag mice containing fos-EGFP.","authors":"Jacob H Wilmot, Tracy L Warren, Cassiano R A F Diniz, Deger Carda, Marrisa M Lafreniere, Alex S Nord, Brian J Wiltgen","doi":"10.3389/fnbeh.2024.1500794","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular and genetic techniques now allow selective tagging and manipulation of the population of neurons, often referred to as \"engram cells,\" that were active during a specific experience. One common approach to labeling these cells is to use the <i>fos-tTA</i> transgenic mouse (TetTag). In addition to tagging cells active during learning, it is common to examine the reactivation of these cells using immediate early gene (IEG) expression as an index of neural activity. There are currently multiple TetTag lines available. The original line, cryopreserved at MMRRC, contains only the <i>fos-tTA</i> transgene, while Jackson Labs provides a version of the mouse that expresses both the <i>fos-tTA</i> and <i>fos-shEGFP</i> genes. In the current experiments, we examined IEG expression in these two mouse lines. Unexpectedly, we found that Jackson <i>fos-tTA/fos-shEGFP</i> mice express increased levels of c-Fos in the hippocampus compared to wild type animals when examined with immunohistochemistry (IHC). The expression of other IEGs, such as Arc and Egr-1, was not elevated in these mice, suggesting that the overexpression of c-Fos is not the result of increased excitability or broad changes in gene expression. qPCR revealed that Jackson <i>fos-tTA/fos-shEGFP</i> mice express mRNA corresponding to a c-Fos-Exon1-GFP fusion molecule, which may bind to C-Fos antibodies during IHC and inflate apparent c-Fos expression. Jackson <i>fos-tTA/fos-shEGFP</i> mice did not differ from their wild-type counterparts in fear expression or memory, indicating no behavioral effect of the presence of a c-Fos-GFP fusion protein. These results identify a major limitation inherent in the use of Jackson <i>fos-tTA/fos-shEGFP</i> mice.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"18 ","pages":"1500794"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnbeh.2024.1500794","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular and genetic techniques now allow selective tagging and manipulation of the population of neurons, often referred to as "engram cells," that were active during a specific experience. One common approach to labeling these cells is to use the fos-tTA transgenic mouse (TetTag). In addition to tagging cells active during learning, it is common to examine the reactivation of these cells using immediate early gene (IEG) expression as an index of neural activity. There are currently multiple TetTag lines available. The original line, cryopreserved at MMRRC, contains only the fos-tTA transgene, while Jackson Labs provides a version of the mouse that expresses both the fos-tTA and fos-shEGFP genes. In the current experiments, we examined IEG expression in these two mouse lines. Unexpectedly, we found that Jackson fos-tTA/fos-shEGFP mice express increased levels of c-Fos in the hippocampus compared to wild type animals when examined with immunohistochemistry (IHC). The expression of other IEGs, such as Arc and Egr-1, was not elevated in these mice, suggesting that the overexpression of c-Fos is not the result of increased excitability or broad changes in gene expression. qPCR revealed that Jackson fos-tTA/fos-shEGFP mice express mRNA corresponding to a c-Fos-Exon1-GFP fusion molecule, which may bind to C-Fos antibodies during IHC and inflate apparent c-Fos expression. Jackson fos-tTA/fos-shEGFP mice did not differ from their wild-type counterparts in fear expression or memory, indicating no behavioral effect of the presence of a c-Fos-GFP fusion protein. These results identify a major limitation inherent in the use of Jackson fos-tTA/fos-shEGFP mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Behavioral Neuroscience
Frontiers in Behavioral Neuroscience BEHAVIORAL SCIENCES-NEUROSCIENCES
CiteScore
4.70
自引率
3.30%
发文量
506
审稿时长
6-12 weeks
期刊介绍: Frontiers in Behavioral Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the neural mechanisms underlying behavior. Field Chief Editor Nuno Sousa at the Instituto de Pesquisa em Ciências da Vida e da Saúde (ICVS) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. This journal publishes major insights into the neural mechanisms of animal and human behavior, and welcomes articles studying the interplay between behavior and its neurobiological basis at all levels: from molecular biology and genetics, to morphological, biochemical, neurochemical, electrophysiological, neuroendocrine, pharmacological, and neuroimaging studies.
期刊最新文献
Developmental improvements in the ability to benefit from testing across middle childhood. Novel automated method to assess group dynamics reveals deficits in behavioral contagion in rats with social deficits. Abnormal c-Fos expression in TetTag mice containing fos-EGFP. Selective deletion of Tsc1 from mouse cerebellar Purkinje neurons drives sex-specific behavioral impairments linked to autism. Animacy processing by distributed and interconnected networks in the temporal cortex of monkeys.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1