Cell density quantification of high resolution Nissl images of the juvenile rat brain.

IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Frontiers in Neuroanatomy Pub Date : 2024-12-18 eCollection Date: 2024-01-01 DOI:10.3389/fnana.2024.1463632
Julie Meystre, Jean Jacquemier, Olivier Burri, Csaba Zsolnai, Nicolas Frank, João Prado Vieira, Ying Shi, Rodrigo Perin, Daniel Keller, Henry Markram
{"title":"Cell density quantification of high resolution Nissl images of the juvenile rat brain.","authors":"Julie Meystre, Jean Jacquemier, Olivier Burri, Csaba Zsolnai, Nicolas Frank, João Prado Vieira, Ying Shi, Rodrigo Perin, Daniel Keller, Henry Markram","doi":"10.3389/fnana.2024.1463632","DOIUrl":null,"url":null,"abstract":"<p><p>Nissl histology underpins our understanding of brain anatomy and architecture. Despite its importance, no high-resolution datasets are currently available in the literature for 14-day-old rats. To remedy this issue and demonstrate the utility of such a dataset, we have acquired over 2000 high-resolution images (0.346 μm per pixel) from eight juvenile rat brains stained with cresyl violet. To analyze this dataset, we developed a semi-automated pipeline using open-source software to perform cell density quantification in the primary somatosensory hindlimb (S1HL) cortical column. In addition, we performed cortical layer annotations both manually and using a machine learning model to expand the number of annotated samples. After training the model, we applied it to 262 images of the S1HL, retroactively assigning segmented cells to specific cortical layers, enabling cell density quantification per layer rather than just for entire brain regions. The pipeline improved the efficiency and reliability of cell density quantification while accurately assigning cortical layer boundaries. Furthermore, the method is adaptable to different brain regions and cell morphologies. The full dataset, annotations, and analysis tools are made publicly available for further research and applications.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1463632"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnana.2024.1463632","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nissl histology underpins our understanding of brain anatomy and architecture. Despite its importance, no high-resolution datasets are currently available in the literature for 14-day-old rats. To remedy this issue and demonstrate the utility of such a dataset, we have acquired over 2000 high-resolution images (0.346 μm per pixel) from eight juvenile rat brains stained with cresyl violet. To analyze this dataset, we developed a semi-automated pipeline using open-source software to perform cell density quantification in the primary somatosensory hindlimb (S1HL) cortical column. In addition, we performed cortical layer annotations both manually and using a machine learning model to expand the number of annotated samples. After training the model, we applied it to 262 images of the S1HL, retroactively assigning segmented cells to specific cortical layers, enabling cell density quantification per layer rather than just for entire brain regions. The pipeline improved the efficiency and reliability of cell density quantification while accurately assigning cortical layer boundaries. Furthermore, the method is adaptable to different brain regions and cell morphologies. The full dataset, annotations, and analysis tools are made publicly available for further research and applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
幼年大鼠脑高分辨率尼氏成像细胞密度定量。
尼氏组织学巩固了我们对大脑解剖和结构的理解。尽管它很重要,但目前文献中没有针对14日龄大鼠的高分辨率数据集。为了解决这个问题,并展示这样一个数据集的实用性,我们从8只幼年大鼠的大脑中获得了2000多张高分辨率图像(0.346 μm / pixel),这些图像都是用甲酚紫染色的。为了分析该数据集,我们使用开源软件开发了一个半自动管道,在初级体感后肢(S1HL)皮质柱中进行细胞密度量化。此外,我们手动和使用机器学习模型进行皮质层注释以扩大注释样本的数量。在训练模型后,我们将其应用于262张S1HL图像,将分割的细胞追溯分配到特定的皮质层,使每层的细胞密度量化,而不仅仅是整个大脑区域。该管道提高了细胞密度定量的效率和可靠性,同时准确地分配皮质层边界。此外,该方法适用于不同的大脑区域和细胞形态。完整的数据集、注释和分析工具都是公开的,可以用于进一步的研究和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neuroanatomy
Frontiers in Neuroanatomy ANATOMY & MORPHOLOGY-NEUROSCIENCES
CiteScore
4.70
自引率
3.40%
发文量
122
审稿时长
>12 weeks
期刊介绍: Frontiers in Neuroanatomy publishes rigorously peer-reviewed research revealing important aspects of the anatomical organization of all nervous systems across all species. Specialty Chief Editor Javier DeFelipe at the Cajal Institute (CSIC) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Exploring the microbiota-gut-brain axis: impact on brain structure and function. The effects of amyloidosis and aging on glutamatergic and GABAergic synapses, and interneurons in the barrel cortex and non-neocortical brain regions. Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei. Opioidergic tuning of social attachment: reciprocal relationship between social deprivation and opioid abuse. Optimal trajectory of the neuroendoscope for third ventricle pavement access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1