首页 > 最新文献

Frontiers in Neuroanatomy最新文献

英文 中文
Exploring the microbiota-gut-brain axis: impact on brain structure and function.
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-02-12 eCollection Date: 2025-01-01 DOI: 10.3389/fnana.2025.1504065
Lidya K Yassin, Mohammed M Nakhal, Alreem Alderei, Afra Almehairbi, Ayishal B Mydeen, Amal Akour, Mohammad I K Hamad

The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.

{"title":"Exploring the microbiota-gut-brain axis: impact on brain structure and function.","authors":"Lidya K Yassin, Mohammed M Nakhal, Alreem Alderei, Afra Almehairbi, Ayishal B Mydeen, Amal Akour, Mohammad I K Hamad","doi":"10.3389/fnana.2025.1504065","DOIUrl":"10.3389/fnana.2025.1504065","url":null,"abstract":"<p><p>The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1504065"},"PeriodicalIF":2.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of amyloidosis and aging on glutamatergic and GABAergic synapses, and interneurons in the barrel cortex and non-neocortical brain regions.
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-02-12 eCollection Date: 2025-01-01 DOI: 10.3389/fnana.2025.1526962
Tao Qu

Previous studies on changes in the distribution of GABAergic interneurons and excitation/inhibition (E/I) balance in Alzheimer's disease (AD) and aging were mainly conducted in the neocortex and hippocampus. However, the limbic system is the primary and crucial location for AD progression. Therefore, in this study, we utilized AD and aging mouse models to investigate the E/I balance and the distribution of parvalbumin (PV)- and somatostatin (SST)-expressing cells in S1BF (barrel field of primary somatosensory cortex, barrel cortex), CA1 hippocampal area and brain regions beyond the neocortex and hippocampus, including retrosplenial cortex (RSC, which is composed of RSG and RSA), piriform cortex (Pir), amygdala (BMA), and hypothalamus (DM). We discovered that amyloidosis may disrupt the alignment of excitatory pre- and postsynaptic quantities. Amyloidosis reduces the quantity of synapses and SST cells, but does not impact the counts of PV cells. By contrast, aging is linked to a decline in synapses, I/E ratios, SST and PV cells. Amyloidosis affects the S1BF and BMA, while aging may harm all studied regions, including the S1BF, RSC, hippocampus, Pir, BMA, and DM. Aging mostly affects synapses and I/E ratios in Pir, BMA, and DM, and PV and SST interneurons in the hippocampus.

{"title":"The effects of amyloidosis and aging on glutamatergic and GABAergic synapses, and interneurons in the barrel cortex and non-neocortical brain regions.","authors":"Tao Qu","doi":"10.3389/fnana.2025.1526962","DOIUrl":"10.3389/fnana.2025.1526962","url":null,"abstract":"<p><p>Previous studies on changes in the distribution of GABAergic interneurons and excitation/inhibition (E/I) balance in Alzheimer's disease (AD) and aging were mainly conducted in the neocortex and hippocampus. However, the limbic system is the primary and crucial location for AD progression. Therefore, in this study, we utilized AD and aging mouse models to investigate the E/I balance and the distribution of parvalbumin (PV)- and somatostatin (SST)-expressing cells in S1BF (barrel field of primary somatosensory cortex, barrel cortex), CA1 hippocampal area and brain regions beyond the neocortex and hippocampus, including retrosplenial cortex (RSC, which is composed of RSG and RSA), piriform cortex (Pir), amygdala (BMA), and hypothalamus (DM). We discovered that amyloidosis may disrupt the alignment of excitatory pre- and postsynaptic quantities. Amyloidosis reduces the quantity of synapses and SST cells, but does not impact the counts of PV cells. By contrast, aging is linked to a decline in synapses, I/E ratios, SST and PV cells. Amyloidosis affects the S1BF and BMA, while aging may harm all studied regions, including the S1BF, RSC, hippocampus, Pir, BMA, and DM. Aging mostly affects synapses and I/E ratios in Pir, BMA, and DM, and PV and SST interneurons in the hippocampus.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1526962"},"PeriodicalIF":2.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei.
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI: 10.3389/fnana.2025.1530236
Maznah Alhesain, Ayman Alzu'bi, Niveditha Sankar, Charles Smith, Janet Kerwin, Ross Laws, Susan Lindsay, Gavin J Clowry

Introduction: Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded.

Methods: This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers.

Results: In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors ZIC4, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with ZIC4 expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ SOX14+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene CNTNAP2 to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2.

Conclusion: In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.

{"title":"Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei.","authors":"Maznah Alhesain, Ayman Alzu'bi, Niveditha Sankar, Charles Smith, Janet Kerwin, Ross Laws, Susan Lindsay, Gavin J Clowry","doi":"10.3389/fnana.2025.1530236","DOIUrl":"10.3389/fnana.2025.1530236","url":null,"abstract":"<p><strong>Introduction: </strong>Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded.</p><p><strong>Methods: </strong>This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers.</p><p><strong>Results: </strong>In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors <i>ZIC4</i>, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with <i>ZIC4</i> expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ <i>SOX14</i>+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene <i>CNTNAP2</i> to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2.</p><p><strong>Conclusion: </strong>In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1530236"},"PeriodicalIF":2.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opioidergic tuning of social attachment: reciprocal relationship between social deprivation and opioid abuse.
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-01-23 eCollection Date: 2024-01-01 DOI: 10.3389/fnana.2024.1521016
Julia A Galiza Soares, Samantha N Sutley-Koury, Matthew B Pomrenze, Jason M Tucciarone

Individuals misusing opioids often report heightened feelings of loneliness and decreased ability to maintain social connections. This disruption in social functioning further promotes addiction, creating a cycle in which increasing isolation drives drug use. Social factors also appear to impact susceptibility and progression of opioid dependence. In particular, increasing evidence suggests that poor early social bond formation and social environments may increase the risk of opioid abuse later in life. The brain opioid theory of social attachment suggests that endogenous opioids are key to forming and sustaining social bonds. Growing literature describes the opioid system as a powerful modulator of social separation distress and attachment formation in rodents and primates. In this framework, disruptions in opioidergic signaling due to opioid abuse may mediate social reward processing and behavior. While changes in endogenous opioid peptides and receptors have been reported in these early-life adversity models, the underlying mechanisms remain poorly understood. This review addresses the apparent bidirectional causal relationship between social deprivation and opioid addiction susceptibility, investigating the role of opioid transmission in attachment bond formation and prosocial behavior. We propose that early social deprivation disrupts the neurobiological substrates associated with opioid transmission, leading to deficits in social attachment and reinforcing addictive behaviors. By examining the literature, we discuss potential overlapping neural pathways between social isolation and opioid addiction, focusing on major reward-aversion substrates known to respond to opioids.

{"title":"Opioidergic tuning of social attachment: reciprocal relationship between social deprivation and opioid abuse.","authors":"Julia A Galiza Soares, Samantha N Sutley-Koury, Matthew B Pomrenze, Jason M Tucciarone","doi":"10.3389/fnana.2024.1521016","DOIUrl":"10.3389/fnana.2024.1521016","url":null,"abstract":"<p><p>Individuals misusing opioids often report heightened feelings of loneliness and decreased ability to maintain social connections. This disruption in social functioning further promotes addiction, creating a cycle in which increasing isolation drives drug use. Social factors also appear to impact susceptibility and progression of opioid dependence. In particular, increasing evidence suggests that poor early social bond formation and social environments may increase the risk of opioid abuse later in life. The brain opioid theory of social attachment suggests that endogenous opioids are key to forming and sustaining social bonds. Growing literature describes the opioid system as a powerful modulator of social separation distress and attachment formation in rodents and primates. In this framework, disruptions in opioidergic signaling due to opioid abuse may mediate social reward processing and behavior. While changes in endogenous opioid peptides and receptors have been reported in these early-life adversity models, the underlying mechanisms remain poorly understood. This review addresses the apparent bidirectional causal relationship between social deprivation and opioid addiction susceptibility, investigating the role of opioid transmission in attachment bond formation and prosocial behavior. We propose that early social deprivation disrupts the neurobiological substrates associated with opioid transmission, leading to deficits in social attachment and reinforcing addictive behaviors. By examining the literature, we discuss potential overlapping neural pathways between social isolation and opioid addiction, focusing on major reward-aversion substrates known to respond to opioids.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1521016"},"PeriodicalIF":2.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal trajectory of the neuroendoscope for third ventricle pavement access.
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI: 10.3389/fnana.2025.1431128
Joana Sousa, Susana Maria Silva, Hélio Alves, Bruno Carvalho, José Maria Sousa, Manuel J Ferreira-Pinto, José Paulo Andrade

Background and aim: Endoscopic Third Ventriculostomy (ETV) is used to treat hydrocephalus, an abnormal cerebrospinal fluid accumulation in brain ventricles. By defining a new trajectory and entry point interval, we aim to establish a standardized approach for FreeHand ETV, a vital technique when specialized tools are unavailable, or during emergencies.

Methods: 187 MRIs were analyzed, with 30 having hydrocephalus. A pathway crossing the cranial bone, interventricular foramen (of Monro) and tuber cinereum was outlined. Measurements involved distances to cranial sutures, pathway angles and depths, and distances to important anatomical landmarks. Comparisons between hydrocephalic and non-hydrocephalic patients were made while assessing variations linked to age, sex and Evan's index.

Results: Significant differences were found, notably for depth (93.520 ± 7.228 mm), coronal plane angulation (10.982° ± 6.119°), distance to the sagittal suture (18.957 ± 8.608 mm), and distance to the superior frontal sulcus (7.00 mm). Other variables did not differ significantly between groups, including for the sagittal plane angulation (2.549° ± 3.576°) and the distances to the precentral sulcus (19.93 ± 7.955 mm), and to the coronal suture (10.55 mm).

Conclusion: The new approach, situated close to cranial sutures and distant to the precentral and superior frontal sulcus, shows promise in enhancing surgical precision and outcomes for hydrocephalus management.

{"title":"Optimal trajectory of the neuroendoscope for third ventricle pavement access.","authors":"Joana Sousa, Susana Maria Silva, Hélio Alves, Bruno Carvalho, José Maria Sousa, Manuel J Ferreira-Pinto, José Paulo Andrade","doi":"10.3389/fnana.2025.1431128","DOIUrl":"10.3389/fnana.2025.1431128","url":null,"abstract":"<p><strong>Background and aim: </strong>Endoscopic Third Ventriculostomy (ETV) is used to treat hydrocephalus, an abnormal cerebrospinal fluid accumulation in brain ventricles. By defining a new trajectory and entry point interval, we aim to establish a standardized approach for FreeHand ETV, a vital technique when specialized tools are unavailable, or during emergencies.</p><p><strong>Methods: </strong>187 MRIs were analyzed, with 30 having hydrocephalus. A pathway crossing the cranial bone, interventricular foramen (of Monro) and tuber cinereum was outlined. Measurements involved distances to cranial sutures, pathway angles and depths, and distances to important anatomical landmarks. Comparisons between hydrocephalic and non-hydrocephalic patients were made while assessing variations linked to age, sex and Evan's index.</p><p><strong>Results: </strong>Significant differences were found, notably for depth (93.520 ± 7.228 mm), coronal plane angulation (10.982° ± 6.119°), distance to the sagittal suture (18.957 ± 8.608 mm), and distance to the superior frontal sulcus (7.00 mm). Other variables did not differ significantly between groups, including for the sagittal plane angulation (2.549° ± 3.576°) and the distances to the precentral sulcus (19.93 ± 7.955 mm), and to the coronal suture (10.55 mm).</p><p><strong>Conclusion: </strong>The new approach, situated close to cranial sutures and distant to the precentral and superior frontal sulcus, shows promise in enhancing surgical precision and outcomes for hydrocephalus management.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1431128"},"PeriodicalIF":2.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143255249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-lapse imaging of identified granule cells in the mouse dentate gyrus after entorhinal lesion in vitro reveals heterogeneous cellular responses to denervation.
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-01-21 eCollection Date: 2024-01-01 DOI: 10.3389/fnana.2024.1513511
Davide Greco, Alexander Drakew, Nina Rößler, Tassilo Jungenitz, Peter Jedlicka, Thomas Deller

Denervation of neurons is a network consequence of brain injury. The effects of denervation on neurons can be readily studied in vitro using organotypic slice cultures of entorhinal cortex and hippocampus. Following transection of the entorhino-dentate projection, granule cells (GCs) are denervated and show on average a transient loss of spines on their denervated distal dendrites but not on their non-denervated proximal dendrites. In the present study, we addressed the question how single GCs and their denervated and non-denervated segments react to entorhinal denervation. Local adeno-associated virus (AAV)-injections were employed to transduce dentate GCs with tdTomato and entorhinal projection neurons with EGFP. This made it possible to visualize both innervating entorhinal fibers and their target neurons and to identify dendritic segments located in the "entorhinal" and the "hippocampal" zone of the dentate gyrus. Confocal time-lapse imaging was used to image distal and proximal segments of single GCs after entorhinal denervation. Time-matched non-denervated cultures served as controls. In line with previous reports, average dendritic spine loss was ~30% (2-4 days post-lesion) in the denervated zone. However, individual GCs showed considerable variability in their response to denervation in both layers, and both decreases as well as increases in spine density were observed at the single cell level. Based on the standard deviations and the effect sizes observed in this study, a computer simulation yielded recommendations for the minimum number of neurons that should be analyzed in future studies using the entorhinal in vitro denervation model.

{"title":"Time-lapse imaging of identified granule cells in the mouse dentate gyrus after entorhinal lesion <i>in vitro</i> reveals heterogeneous cellular responses to denervation.","authors":"Davide Greco, Alexander Drakew, Nina Rößler, Tassilo Jungenitz, Peter Jedlicka, Thomas Deller","doi":"10.3389/fnana.2024.1513511","DOIUrl":"10.3389/fnana.2024.1513511","url":null,"abstract":"<p><p>Denervation of neurons is a network consequence of brain injury. The effects of denervation on neurons can be readily studied <i>in vitro</i> using organotypic slice cultures of entorhinal cortex and hippocampus. Following transection of the entorhino-dentate projection, granule cells (GCs) are denervated and show on average a transient loss of spines on their denervated distal dendrites but not on their non-denervated proximal dendrites. In the present study, we addressed the question how single GCs and their denervated and non-denervated segments react to entorhinal denervation. Local adeno-associated virus (AAV)-injections were employed to transduce dentate GCs with tdTomato and entorhinal projection neurons with EGFP. This made it possible to visualize both innervating entorhinal fibers and their target neurons and to identify dendritic segments located in the \"entorhinal\" and the \"hippocampal\" zone of the dentate gyrus. Confocal time-lapse imaging was used to image distal and proximal segments of single GCs after entorhinal denervation. Time-matched non-denervated cultures served as controls. In line with previous reports, average dendritic spine loss was ~30% (2-4 days post-lesion) in the denervated zone. However, individual GCs showed considerable variability in their response to denervation in both layers, and both decreases as well as increases in spine density were observed at the single cell level. Based on the standard deviations and the effect sizes observed in this study, a computer simulation yielded recommendations for the minimum number of neurons that should be analyzed in future studies using the entorhinal <i>in vitro</i> denervation model.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1513511"},"PeriodicalIF":2.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular characterization of chicken DA systems reveals that the avian personality gene, DRD4, is expressed in the mitral cells of the olfactory bulb.
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-01-15 eCollection Date: 2025-01-01 DOI: 10.3389/fnana.2025.1531200
Toshiyuki Fujita, Naoya Aoki, Chihiro Mori, Koichi J Homma, Shinji Yamaguchi

Animal personalities are stable, context-dependent behavioral differences. Associations between the personality of birds and polymorphisms in the dopamine receptor D4 (DRD4) gene have been repeatedly observed. In mammals, our understanding of the role of the dopamine (DA) system in higher cognitive functions and psychiatric disorders is improving, and we are beginning to understand the relationship between the neural circuits modulating the DA system and personality traits. However, to understand the phylogenetic continuity of the neural basis of personality, it is necessary to clarify the neural circuits that process personality in other animals and compare them with those in mammals. In birds, the DA system is anatomically and molecularly similar to that in mammals; however, the function of DRD4 remains largely unknown. In this study, we used chicks as model birds to reveal the expression regions of the DA neuron-related markers tyrosine hydroxylase (TH), dopa decarboxylase (DDC), dopamine β-hydroxylase (DBH), and DRD4, as well as other DRDs throughout the forebrain. We found that DRD4 was selectively expressed in the mitral cells of the olfactory bulb (OB). Furthermore, a detailed comparison of the expression regions of DA neurons and DRD4 in the OB revealed a cellular composition similar to that of mammals. Our findings suggest that the animal personality gene DRD4 is important for olfactory information processing in birds, providing a new basis for comparing candidate neural circuits for personality traits between birds and mammals.

{"title":"Molecular characterization of chicken DA systems reveals that the avian personality gene, <i>DRD4</i>, is expressed in the mitral cells of the olfactory bulb.","authors":"Toshiyuki Fujita, Naoya Aoki, Chihiro Mori, Koichi J Homma, Shinji Yamaguchi","doi":"10.3389/fnana.2025.1531200","DOIUrl":"10.3389/fnana.2025.1531200","url":null,"abstract":"<p><p>Animal personalities are stable, context-dependent behavioral differences. Associations between the personality of birds and polymorphisms in the dopamine receptor D4 (DRD4) gene have been repeatedly observed. In mammals, our understanding of the role of the dopamine (DA) system in higher cognitive functions and psychiatric disorders is improving, and we are beginning to understand the relationship between the neural circuits modulating the DA system and personality traits. However, to understand the phylogenetic continuity of the neural basis of personality, it is necessary to clarify the neural circuits that process personality in other animals and compare them with those in mammals. In birds, the DA system is anatomically and molecularly similar to that in mammals; however, the function of DRD4 remains largely unknown. In this study, we used chicks as model birds to reveal the expression regions of the DA neuron-related markers <i>tyrosine hydroxylase (TH), dopa decarboxylase (DDC), dopamine</i> β<i>-hydroxylase (DBH)</i>, and <i>DRD4</i>, as well as other <i>DRDs</i> throughout the forebrain. We found that <i>DRD4</i> was selectively expressed in the mitral cells of the olfactory bulb (OB). Furthermore, a detailed comparison of the expression regions of DA neurons and <i>DRD4</i> in the OB revealed a cellular composition similar to that of mammals. Our findings suggest that the animal personality gene <i>DRD4</i> is important for olfactory information processing in birds, providing a new basis for comparing candidate neural circuits for personality traits between birds and mammals.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1531200"},"PeriodicalIF":2.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hodological patterning as an organizing principle in vertebrate motor circuitry.
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI: 10.3389/fnana.2024.1510944
Joel C Glover

Hodological patterning refers to developmental mechanisms that link the location of neurons in the brain or spinal cord to specific axonal trajectories that direct connectivity to synaptic targets either within the central nervous system or in the periphery. In vertebrate motor circuits, hodological patterning has been demonstrated at different levels, from the final motor output of somatic and preganglionic autonomic neurons targeting peripheral motoneurons and ganglion cells, to premotor inputs from spinal and brainstem neuron populations targeting the somatic motoneurons and preganglionic autonomic neurons, to cortical neurons that delegate movement commands to the brainstem and spinal neurons. In many cases molecular profiling reveals potential underlying mechanisms whereby selective gene expression creates the link between location and axon trajectory. At the cortical level, somatotopic organization suggests a potential underlying hodological patterning, but this has not been proven. This review describes examples of hodological patterning in motor circuits and covers current knowledge about how this patterning arises.

{"title":"Hodological patterning as an organizing principle in vertebrate motor circuitry.","authors":"Joel C Glover","doi":"10.3389/fnana.2024.1510944","DOIUrl":"10.3389/fnana.2024.1510944","url":null,"abstract":"<p><p>Hodological patterning refers to developmental mechanisms that link the location of neurons in the brain or spinal cord to specific axonal trajectories that direct connectivity to synaptic targets either within the central nervous system or in the periphery. In vertebrate motor circuits, hodological patterning has been demonstrated at different levels, from the final motor output of somatic and preganglionic autonomic neurons targeting peripheral motoneurons and ganglion cells, to premotor inputs from spinal and brainstem neuron populations targeting the somatic motoneurons and preganglionic autonomic neurons, to cortical neurons that delegate movement commands to the brainstem and spinal neurons. In many cases molecular profiling reveals potential underlying mechanisms whereby selective gene expression creates the link between location and axon trajectory. At the cortical level, somatotopic organization suggests a potential underlying hodological patterning, but this has not been proven. This review describes examples of hodological patterning in motor circuits and covers current knowledge about how this patterning arises.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1510944"},"PeriodicalIF":2.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach to completely alleviate peripheral neuropathic pain in human patients: insights from preclinical data. 一种完全缓解人类患者周围神经性疼痛的新方法:来自临床前数据的见解。
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-01-07 eCollection Date: 2024-01-01 DOI: 10.3389/fnana.2024.1523095
Safa Shehab, Mohammad I K Hamad, Bright Starling Emerald

Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain. Current treatments for neuropathic pain are generally inadequate, and prevention remains elusive. In this review, we provide an overview of current treatments, their limitations, and a discussion on the potential of capsaicin and its analog, resiniferatoxin (RTX), for complete alleviation of nerve injury-induced neuropathic pain. In an animal model of neuropathic pain where the fifth lumbar (L5) spinal nerve is unilaterally ligated and cut, resulting in ipsilateral hyperalgesia, allodynia, and spontaneous pain akin to human neuropathic pain. The application of capsaicin or RTX to the adjacent uninjured L3 and L4 nerves completely alleviated and prevented mechanical and thermal hyperalgesia following the L5 nerve injury. The effects of this treatment were specific to unmyelinated fibers (responsible for pain sensation), while thick myelinated nerve fibers (responsible for touch and mechanoreceptor sensations) remained intact. Here, we propose to translate these promising preclinical results into effective therapeutic interventions in humans by direct application of capsaicin or RTX to adjacent uninjured nerves in patients who suffer from neuropathic pain due to peripheral nerve injury, following surgical interventions, diabetic neuropathy, trauma, vertebral disc herniation, nerve entrapment, ischemia, postherpetic lesion, and spinal cord injury.

神经性疼痛是世界范围内普遍存在的健康问题,对临床医生和神经科学家都提出了重大挑战。急性疼痛是潜在组织损伤的警告信号,而神经性疼痛是一种由损伤或疾病影响神经系统感觉通路引起的慢性病理状态。神经性疼痛的特征是长时间的同侧痛觉过敏(对疼痛的敏感性增加)、异位性疼痛(对通常不痛的刺激产生的痛觉)和自发的无因性疼痛。目前对神经性疼痛的治疗通常是不充分的,预防仍然难以捉摸。在这篇综述中,我们概述了目前的治疗方法及其局限性,并讨论了辣椒素及其类似物树脂干扰素(RTX)在完全缓解神经损伤性神经性疼痛方面的潜力。在神经性疼痛的动物模型中,第五腰椎(L5)脊神经被单侧结扎和切断,导致同侧痛觉过敏、异常性疼痛和类似于人类神经性疼痛的自发性疼痛。辣椒素或RTX应用于相邻未损伤的L3和L4神经完全缓解和防止L5神经损伤后的机械和热痛觉过敏。这种治疗的效果对无髓神经纤维(负责疼痛感觉)有特异性,而粗髓神经纤维(负责触觉和机械感受器感觉)保持完整。在这里,我们建议将这些有希望的临床前研究结果转化为有效的人类治疗干预措施,通过将辣椒素或RTX直接应用于周围神经损伤、手术干预、糖尿病神经病变、创伤、椎间盘突出、神经卡压、缺血、带状疱疹后病变和脊髓损伤等患者的邻近未损伤神经。
{"title":"A novel approach to completely alleviate peripheral neuropathic pain in human patients: insights from preclinical data.","authors":"Safa Shehab, Mohammad I K Hamad, Bright Starling Emerald","doi":"10.3389/fnana.2024.1523095","DOIUrl":"10.3389/fnana.2024.1523095","url":null,"abstract":"<p><p>Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain. Current treatments for neuropathic pain are generally inadequate, and prevention remains elusive. In this review, we provide an overview of current treatments, their limitations, and a discussion on the potential of capsaicin and its analog, resiniferatoxin (RTX), for complete alleviation of nerve injury-induced neuropathic pain. In an animal model of neuropathic pain where the fifth lumbar (L5) spinal nerve is unilaterally ligated and cut, resulting in ipsilateral hyperalgesia, allodynia, and spontaneous pain akin to human neuropathic pain. The application of capsaicin or RTX to the adjacent uninjured L3 and L4 nerves completely alleviated and prevented mechanical and thermal hyperalgesia following the L5 nerve injury. The effects of this treatment were specific to unmyelinated fibers (responsible for pain sensation), while thick myelinated nerve fibers (responsible for touch and mechanoreceptor sensations) remained intact. Here, we propose to translate these promising preclinical results into effective therapeutic interventions in humans by direct application of capsaicin or RTX to adjacent uninjured nerves in patients who suffer from neuropathic pain due to peripheral nerve injury, following surgical interventions, diabetic neuropathy, trauma, vertebral disc herniation, nerve entrapment, ischemia, postherpetic lesion, and spinal cord injury.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1523095"},"PeriodicalIF":2.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The histological development of the fetal human inferior colliculus during the second trimester. 妊娠中期胎儿人下丘的组织学发育。
IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2025-01-06 eCollection Date: 2024-01-01 DOI: 10.3389/fnana.2024.1502778
Reetuparna Nanda, Mihail Bota, Jaikishan Jayakumar, Suresh S, S Lata, E Harish Kumar, Chitra Srinivasan, Sudha Vasudevan, Kumutha Jayaraman, Mohanasankar Sivaprakasam, Richa Verma

The inferior colliculus (IC) is an important midbrain station of the auditory pathway, as well as an important hub of multisensory integration. The adult mammalian IC can be subdivided into three nuclei, with distinct cyto- and myeloarchitectonical profiles and distinct calcium binding proteins expression patterns. Despite several studies about its structural and functional development, the knowledge about the human fetal IC is rather limited. In this paper we first systematically describe the histological development of the human fetal IC and its subparts in five stages of the second trimester of pregnancy: 15 gestation weeks (GW), 18 GW, 21 GW, 24 GW, and 27 GW. We 3D reconstruct and calculate the volumetric growth of IC from one stage to another, which increases from 12.85 mm3 at 15 GW to 34.27 mm3 at 27 GW in the left hemisphere. The volumetric changes in the IC were further evaluated at the cellular level using serial Nissl-stained sections, as well as glial fibrillary acidic proteins (GFAP) and calretinin immunohistochemistry. We identify stellate-like and round neurons in the central nucleus of the IC (CNIC) at 24 GW and 27 GW, comparable to the adult human IC. Novel in this study, we investigate the differential calretinin expression patterns in the IC subparts, from 15 GW to 27 GW. CR labeling is identified mainly in the cortical IC rather than in the central nucleus. Furthermore, using GFAP, we describe the radial glial fibers patterns in IC, which are dominant at 18 GW and gradually taper off at later developmental stages. Finally, we describe the development of astroglia in each of the five developmental stages. All these results indicate that the human fetal IC development and cellular maturation occur in two major stages during the second trimester.

下丘是听觉通路的重要中脑站,也是多感觉整合的重要中枢。成年哺乳动物IC可以细分为三个细胞核,具有不同的细胞和骨髓结构谱和不同的钙结合蛋白表达模式。尽管有一些关于其结构和功能发育的研究,但对人类胎儿IC的认识相当有限。在本文中,我们首先系统地描述了人类胎儿IC及其子部分在妊娠中期的五个阶段:15妊娠周(GW)、18妊娠周、21妊娠周、24妊娠周和27妊娠周。我们三维重建并计算了IC从一个阶段到另一个阶段的体积增长,在左半球从15 GW时的12.85 mm3增加到27 GW时的34.27 mm3。在细胞水平上,通过一系列nissl染色切片,以及胶质纤维酸性蛋白(GFAP)和calretinin免疫组织化学进一步评估IC的体积变化。我们在24 GW和27 GW的IC (CNIC)中央核中发现了星状和圆形神经元,与成人IC相当。在本研究中,我们研究了IC亚部分中calretinin的差异表达模式,从15 GW到27 GW。CR标记主要在皮质IC中而不是在中央核中发现。此外,使用GFAP,我们描述了IC中的径向胶质纤维模式,这种模式在18 GW时占主导地位,并在发育后期逐渐减少。最后,我们描述了星形胶质细胞在五个发育阶段的发展。这些结果表明,人胎儿IC发育和细胞成熟主要发生在妊娠中期的两个阶段。
{"title":"The histological development of the fetal human inferior colliculus during the second trimester.","authors":"Reetuparna Nanda, Mihail Bota, Jaikishan Jayakumar, Suresh S, S Lata, E Harish Kumar, Chitra Srinivasan, Sudha Vasudevan, Kumutha Jayaraman, Mohanasankar Sivaprakasam, Richa Verma","doi":"10.3389/fnana.2024.1502778","DOIUrl":"10.3389/fnana.2024.1502778","url":null,"abstract":"<p><p>The inferior colliculus (IC) is an important midbrain station of the auditory pathway, as well as an important hub of multisensory integration. The adult mammalian IC can be subdivided into three nuclei, with distinct cyto- and myeloarchitectonical profiles and distinct calcium binding proteins expression patterns. Despite several studies about its structural and functional development, the knowledge about the human fetal IC is rather limited. In this paper we first systematically describe the histological development of the human fetal IC and its subparts in five stages of the second trimester of pregnancy: 15 gestation weeks (GW), 18 GW, 21 GW, 24 GW, and 27 GW. We 3D reconstruct and calculate the volumetric growth of IC from one stage to another, which increases from 12.85 mm<sup>3</sup> at 15 GW to 34.27 mm<sup>3</sup> at 27 GW in the left hemisphere. The volumetric changes in the IC were further evaluated at the cellular level using serial Nissl-stained sections, as well as glial fibrillary acidic proteins (GFAP) and calretinin immunohistochemistry. We identify stellate-like and round neurons in the central nucleus of the IC (CNIC) at 24 GW and 27 GW, comparable to the adult human IC. Novel in this study, we investigate the differential calretinin expression patterns in the IC subparts, from 15 GW to 27 GW. CR labeling is identified mainly in the cortical IC rather than in the central nucleus. Furthermore, using GFAP, we describe the radial glial fibers patterns in IC, which are dominant at 18 GW and gradually taper off at later developmental stages. Finally, we describe the development of astroglia in each of the five developmental stages. All these results indicate that the human fetal IC development and cellular maturation occur in two major stages during the second trimester.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1502778"},"PeriodicalIF":2.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Neuroanatomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1