{"title":"Development of a 300 kV/3 kHz nanosecond pulse generator using semiconductor opening switches.","authors":"Yu-Hao Chen, Jie Yang, Yan-Zhao Xie","doi":"10.1063/5.0223667","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present the development of a nanosecond pulse generator utilizing semiconductor opening switches (SOS), designed to deliver high voltage and operate at a high repetitive frequency. The pulse generator comprises three main components: a primary charging unit, a magnetic pulse compression unit, and an SOS magnification unit. To ensure stable operation of the high-power charging unit at high repetitive frequencies, a rectifying resonant charging and energy recovery circuit are implemented, providing a 1 kV charging voltage at a 3 kHz repetition rate. The three-stage magnetic pulse compression is designed to reduce the pulse width from tens of microseconds to tens of nanoseconds, where self-demagnetization could be completed during repetitive frequency operation. To achieve an output voltage of 300 kV, multiple SOS switches are employed in a series. The developed pulse generator achieves a final output of 300 kV with a 3 kHz repetitive frequency under a load of 2 kΩ. Furthermore, the effects of multiple factors on the output performance are characterized by both simulation and measurement for a comprehensive analysis.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0223667","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present the development of a nanosecond pulse generator utilizing semiconductor opening switches (SOS), designed to deliver high voltage and operate at a high repetitive frequency. The pulse generator comprises three main components: a primary charging unit, a magnetic pulse compression unit, and an SOS magnification unit. To ensure stable operation of the high-power charging unit at high repetitive frequencies, a rectifying resonant charging and energy recovery circuit are implemented, providing a 1 kV charging voltage at a 3 kHz repetition rate. The three-stage magnetic pulse compression is designed to reduce the pulse width from tens of microseconds to tens of nanoseconds, where self-demagnetization could be completed during repetitive frequency operation. To achieve an output voltage of 300 kV, multiple SOS switches are employed in a series. The developed pulse generator achieves a final output of 300 kV with a 3 kHz repetitive frequency under a load of 2 kΩ. Furthermore, the effects of multiple factors on the output performance are characterized by both simulation and measurement for a comprehensive analysis.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.