{"title":"Deep Learning-Based Quantification of Adenoid Hypertrophy and Its Correlation with Apnea-Hypopnea Index in Pediatric Obstructive Sleep Apnea.","authors":"Jie Cai, Tianyu Xiu, Yuliang Song, Xuwei Fan, Jianghao Wu, Aikebaier Tuohuti, Yifan Hu, Xiong Chen","doi":"10.2147/NSS.S492146","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to develop a deep learning methodology for quantitative assessing adenoid hypertrophy in nasopharyngoscopy images and to investigate its correlation with the apnea-hypopnea index (AHI) in pediatric patients with obstructive sleep apnea (OSA).</p><p><strong>Patients and methods: </strong>A total of 1642 nasopharyngoscopy images were collected from pediatric patients aged 3 to 12 years. After excluding images with obscured secretions, incomplete adenoid exposure, 1500 images were retained for analysis. The adenoid-to-nasopharyngeal (A/N) ratio was manually annotated by two experienced otolaryngologists using MATLAB's imfreehand tool. Inter-annotator agreement was assessed using the Mann-Whitney <i>U</i>-test. Deep learning segmentation models were developed with the MMSegmentation framework, incorporating transfer learning and ensemble learning techniques. Model performance was evaluated using precision, recall, mean intersection over union (MIoU), overall accuracy, Cohen's Kappa, confusion matrices, and receiver operating characteristic (ROC) curves. The correlation between the A/N ratio and AHI, derived from polysomnography, was analyzed to evaluate clinical relevance.</p><p><strong>Results: </strong>Manual evaluation of adenoid hypertrophy by otolaryngologists (p=0.8507) and MATLAB calibration (p=0.679) demonstrated high consistency, with no significant differences. Among the deep learning models, the ensemble learning-based SUMNet outperformed others, achieving the highest precision (0.9616), MIoU (0.8046), overall accuracy (0.9182), and Kappa (0.87). SUMNet also exhibited superior consistency in classifying adenoid sizes. ROC analysis revealed that SUMNet (AUC=0.85) outperformed expert evaluations (AUC=0.74). A strong positive correlation was observed between the A/N ratio and AHI, with the correlation coefficients for SUMNet-derived ratios ranging from r=0.9052 (tonsils size+1) to r=0.4452 (tonsils size+3) and for expert-derived ratios ranging from r=0.4590 (tonsils size+1) to r=0.2681 (tonsils size+3).</p><p><strong>Conclusion: </strong>This study introduces a precise and reliable deep learning-based method for quantifying adenoid hypertrophy and addresses the challenge posed limited sample sizes in deep learning applications. The significant correlation between adenoid hypertrophy and AHI underscores the clinical utility of this method in pediatric OSA diagnosis.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"16 ","pages":"2243-2256"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S492146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to develop a deep learning methodology for quantitative assessing adenoid hypertrophy in nasopharyngoscopy images and to investigate its correlation with the apnea-hypopnea index (AHI) in pediatric patients with obstructive sleep apnea (OSA).
Patients and methods: A total of 1642 nasopharyngoscopy images were collected from pediatric patients aged 3 to 12 years. After excluding images with obscured secretions, incomplete adenoid exposure, 1500 images were retained for analysis. The adenoid-to-nasopharyngeal (A/N) ratio was manually annotated by two experienced otolaryngologists using MATLAB's imfreehand tool. Inter-annotator agreement was assessed using the Mann-Whitney U-test. Deep learning segmentation models were developed with the MMSegmentation framework, incorporating transfer learning and ensemble learning techniques. Model performance was evaluated using precision, recall, mean intersection over union (MIoU), overall accuracy, Cohen's Kappa, confusion matrices, and receiver operating characteristic (ROC) curves. The correlation between the A/N ratio and AHI, derived from polysomnography, was analyzed to evaluate clinical relevance.
Results: Manual evaluation of adenoid hypertrophy by otolaryngologists (p=0.8507) and MATLAB calibration (p=0.679) demonstrated high consistency, with no significant differences. Among the deep learning models, the ensemble learning-based SUMNet outperformed others, achieving the highest precision (0.9616), MIoU (0.8046), overall accuracy (0.9182), and Kappa (0.87). SUMNet also exhibited superior consistency in classifying adenoid sizes. ROC analysis revealed that SUMNet (AUC=0.85) outperformed expert evaluations (AUC=0.74). A strong positive correlation was observed between the A/N ratio and AHI, with the correlation coefficients for SUMNet-derived ratios ranging from r=0.9052 (tonsils size+1) to r=0.4452 (tonsils size+3) and for expert-derived ratios ranging from r=0.4590 (tonsils size+1) to r=0.2681 (tonsils size+3).
Conclusion: This study introduces a precise and reliable deep learning-based method for quantifying adenoid hypertrophy and addresses the challenge posed limited sample sizes in deep learning applications. The significant correlation between adenoid hypertrophy and AHI underscores the clinical utility of this method in pediatric OSA diagnosis.
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.