A CRISPR-HITI strategy approach to improve CHO cell viability by modifying the 3'UTR of Caspase 8 Associated Protein 2.

IF 1.5 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Research Communications Pub Date : 2025-01-01 DOI:10.22099/mbrc.2024.50513.2000
Soofia Sorourian, Abbas Behzad-Behbahani, Mohsen Forouzanfar, Mojtaba Jafarinia, Fatemeh Safari
{"title":"A CRISPR-HITI strategy approach to improve CHO cell viability by modifying the 3'UTR of Caspase 8 Associated Protein 2.","authors":"Soofia Sorourian, Abbas Behzad-Behbahani, Mohsen Forouzanfar, Mojtaba Jafarinia, Fatemeh Safari","doi":"10.22099/mbrc.2024.50513.2000","DOIUrl":null,"url":null,"abstract":"<p><p>Chinese Hamster Ovary (CHO) cells are essential in biopharmaceutical manufacturing. Scientists use CRISPR to enhance productivity. mRNAs contain UTRs that regulate gene expression, affecting protein abundance. Targeting these regions creates desirable knockout cells. The Caspase 8 Associated Protein 2 (<i>CASP8AP2</i>) gene is a promising target for improving host cell viability. This study used the CRISPR-Homology-Independent Targeted Integration (HITI) strategy to modify the 3'UTR region of the <i>CASP8AP2</i> gene in CHO cells. The aim was to evaluate the effects of <i>CASP8AP2</i> silencing on cell proliferation, viability, apoptosis, and the cell cycle. <i>CASP8AP2</i> silencing was assessed post-modification by extracting genomic DNA from modified and unmodified CHO cells, followed by PCR and sequencing to confirm deletions. Cell proliferation and viability were measured using MTT assays, and cell cycle analysis was performed via flow cytometry. Apoptosis was evaluated through Annexin V/PE staining and flow cytometry, with apoptosis resistance assessed by determining the IC<sub>50</sub> of sodium butyrate. Results showed <i>CASP8AP2</i> deletion did not affect cell proliferation or the cell cycle but improved CHO cell viability and increased resistance to apoptosis. The IC<sub>50</sub> for sodium butyrate was higher in <i>CASP8AP2</i> knockout cells (7.84 mM) compared to native cells (3.43 mM), indicating enhanced apoptosis resistance. This study highlights <i>CASP8AP2</i>'s role in apoptosis regulation without impacting cell proliferation or the cell cycle. <i>CASP8AP2</i> deletion enhances viability and resistance to apoptosis, suggesting it as a target for improving recombinant protein production. Further research is needed to elucidate the molecular mechanisms and develop therapeutic strategies based on this approach.</p>","PeriodicalId":19025,"journal":{"name":"Molecular Biology Research Communications","volume":"14 1","pages":"15-26"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22099/mbrc.2024.50513.2000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chinese Hamster Ovary (CHO) cells are essential in biopharmaceutical manufacturing. Scientists use CRISPR to enhance productivity. mRNAs contain UTRs that regulate gene expression, affecting protein abundance. Targeting these regions creates desirable knockout cells. The Caspase 8 Associated Protein 2 (CASP8AP2) gene is a promising target for improving host cell viability. This study used the CRISPR-Homology-Independent Targeted Integration (HITI) strategy to modify the 3'UTR region of the CASP8AP2 gene in CHO cells. The aim was to evaluate the effects of CASP8AP2 silencing on cell proliferation, viability, apoptosis, and the cell cycle. CASP8AP2 silencing was assessed post-modification by extracting genomic DNA from modified and unmodified CHO cells, followed by PCR and sequencing to confirm deletions. Cell proliferation and viability were measured using MTT assays, and cell cycle analysis was performed via flow cytometry. Apoptosis was evaluated through Annexin V/PE staining and flow cytometry, with apoptosis resistance assessed by determining the IC50 of sodium butyrate. Results showed CASP8AP2 deletion did not affect cell proliferation or the cell cycle but improved CHO cell viability and increased resistance to apoptosis. The IC50 for sodium butyrate was higher in CASP8AP2 knockout cells (7.84 mM) compared to native cells (3.43 mM), indicating enhanced apoptosis resistance. This study highlights CASP8AP2's role in apoptosis regulation without impacting cell proliferation or the cell cycle. CASP8AP2 deletion enhances viability and resistance to apoptosis, suggesting it as a target for improving recombinant protein production. Further research is needed to elucidate the molecular mechanisms and develop therapeutic strategies based on this approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Research Communications
Molecular Biology Research Communications BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
3.00
自引率
0.00%
发文量
12
期刊介绍: “Molecular Biology Research Communications” (MBRC) is an international journal of Molecular Biology. It is published quarterly by Shiraz University (Iran). The MBRC is a fully peer-reviewed journal. The journal welcomes submission of Original articles, Short communications, Invited review articles, and Letters to the Editor which meets the general criteria of significance and scientific excellence in all fields of “Molecular Biology”.
期刊最新文献
IL13 gene polymorphisms among Sudanese patients with bronchial asthma: a case-control study. A CRISPR-HITI strategy approach to improve CHO cell viability by modifying the 3'UTR of Caspase 8 Associated Protein 2. Dysregulated genes in HIGK-treated F. nucleatum and their possible association with HNSCC. Dysregulated LINC01133 expression in laryngeal carcinoma: Prognostic implications and predicted ceRNA interactome. Evaluation of several strategies for controlling canker plant disease caused by Pseudomonas syringae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1