Development of a rat airway organoids model for studying chronic obstructive pulmonary disease.

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2024-12-26 DOI:10.1016/j.tice.2024.102692
Chuanlai Yang, Hongwei Yang, Yangling Xian, Nanyi Liu, Haoyin Tan, Zirui Ren, Yanzhen Lin, Huan Zhao, Changjian Fang, Kang Yu, Dequan Pan, Yali Zhang, Xiumin Huang, Ningshao Xia, Wei Wang, Tong Cheng
{"title":"Development of a rat airway organoids model for studying chronic obstructive pulmonary disease.","authors":"Chuanlai Yang, Hongwei Yang, Yangling Xian, Nanyi Liu, Haoyin Tan, Zirui Ren, Yanzhen Lin, Huan Zhao, Changjian Fang, Kang Yu, Dequan Pan, Yali Zhang, Xiumin Huang, Ningshao Xia, Wei Wang, Tong Cheng","doi":"10.1016/j.tice.2024.102692","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) poses global health challenges owing to limited treatment options and high rates of morbidity and mortality. Airway organoids have recently become a valuable resource for the investigation of respiratory diseases. However, limited access to clinical tissue samples hinders the use of airway organoids to study COPD. Therefore, alternative models that can mimic human airway pathology without relying on human tissues are needed. In this study, airway organoids were developed from tracheal epithelial cells obtained from 8-week-old Sprague-Dawley rats and exposed to lipopolysaccharide (LPS) to induce COPD-like characteristics. Exposure to LPS leads to structural changes in organoids, including an increase in goblet cells, a decrease in ciliated cells, increased mucin production, and elevated levels of pro-inflammatory cytokines. The COPD drugs erdosteine and R-HP210 effectively reduced mucin secretion, although none was able to restore the function of ciliated cells. Inflammatory markers responded differently, with ensifentrine and erdosteine significantly reducing cytokine levels. These results demonstrate that rat airway organoids replicate important aspects of human COPD pathology, thus providing an accessible, ethical, and clinically relevant alternative to human tissues and traditional animal models to enhance our understanding of COPD pathogenesis and evaluate potential treatments.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102692"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2024.102692","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic obstructive pulmonary disease (COPD) poses global health challenges owing to limited treatment options and high rates of morbidity and mortality. Airway organoids have recently become a valuable resource for the investigation of respiratory diseases. However, limited access to clinical tissue samples hinders the use of airway organoids to study COPD. Therefore, alternative models that can mimic human airway pathology without relying on human tissues are needed. In this study, airway organoids were developed from tracheal epithelial cells obtained from 8-week-old Sprague-Dawley rats and exposed to lipopolysaccharide (LPS) to induce COPD-like characteristics. Exposure to LPS leads to structural changes in organoids, including an increase in goblet cells, a decrease in ciliated cells, increased mucin production, and elevated levels of pro-inflammatory cytokines. The COPD drugs erdosteine and R-HP210 effectively reduced mucin secretion, although none was able to restore the function of ciliated cells. Inflammatory markers responded differently, with ensifentrine and erdosteine significantly reducing cytokine levels. These results demonstrate that rat airway organoids replicate important aspects of human COPD pathology, thus providing an accessible, ethical, and clinically relevant alternative to human tissues and traditional animal models to enhance our understanding of COPD pathogenesis and evaluate potential treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Development of a rat airway organoids model for studying chronic obstructive pulmonary disease. Mandibular bone defect healing using polylactic acid-nano-hydroxyapatite-gelatin scaffold loaded with hesperidin and dental pulp stem cells in rat. Syringin alleviates ROS-induced acute lung injury by activating SIRT1/STAT6 signaling pathway to inhibit ferroptosis. Role of exosomes in dental and craniofacial regeneration - A review. Inhibition of proliferation, migration and invasion of RM-1 cells by roemerine: Insights from in vitro and in vivo studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1