Nishanth Anandanadarajah, Amlan Talukder, Deryck Yeung, Yuanyuan Li, David M Umbach, Zheng Fan, Leping Li
{"title":"Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data.","authors":"Nishanth Anandanadarajah, Amlan Talukder, Deryck Yeung, Yuanyuan Li, David M Umbach, Zheng Fan, Leping Li","doi":"10.3390/signals5040038","DOIUrl":null,"url":null,"abstract":"<p><p>Polysomnography (PSG) measures brain activity during sleep via electroencephalography (EEG) using six leads. Artifacts caused by movement or loose leads distort EEG measurements. We developed a method to automatically identify such artifacts in a PSG EEG trace. After preprocessing, we extracted power levels at frequencies of 0.5-32.5 Hz with multitaper spectral analysis using 4 s windows with 3 s overlap. For each resulting 1 s segment, we computed segment-specific correlations between power levels for all pairs of leads. We then averaged all pairwise correlation coefficients involving each lead, creating a time series of segment-specific average correlations for each lead. Our algorithm scans each averaged time series separately for \"bad\" segments using a local moving window. In a second pass, any segment whose averaged correlation is less than a global threshold among all remaining good segments is declared an outlier. We mark all segments between two outlier segments fewer than 300 s apart as artifact regions. This process is repeated, removing a channel with excessive outliers in each iteration. We compared artifact regions discovered by our algorithm to expert-assessed ground truth, achieving sensitivity and specificity of 80% and 91%, respectively. Our algorithm is an open-source tool, either as a Python package or a Docker.</p>","PeriodicalId":93815,"journal":{"name":"Signals","volume":"5 4","pages":"690-704"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals5040038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polysomnography (PSG) measures brain activity during sleep via electroencephalography (EEG) using six leads. Artifacts caused by movement or loose leads distort EEG measurements. We developed a method to automatically identify such artifacts in a PSG EEG trace. After preprocessing, we extracted power levels at frequencies of 0.5-32.5 Hz with multitaper spectral analysis using 4 s windows with 3 s overlap. For each resulting 1 s segment, we computed segment-specific correlations between power levels for all pairs of leads. We then averaged all pairwise correlation coefficients involving each lead, creating a time series of segment-specific average correlations for each lead. Our algorithm scans each averaged time series separately for "bad" segments using a local moving window. In a second pass, any segment whose averaged correlation is less than a global threshold among all remaining good segments is declared an outlier. We mark all segments between two outlier segments fewer than 300 s apart as artifact regions. This process is repeated, removing a channel with excessive outliers in each iteration. We compared artifact regions discovered by our algorithm to expert-assessed ground truth, achieving sensitivity and specificity of 80% and 91%, respectively. Our algorithm is an open-source tool, either as a Python package or a Docker.