A modified adaptive Kalman filter algorithm for the distributed underwater multi-target passive tracking system.

IF 1.4 Q3 ACOUSTICS JASA express letters Pub Date : 2025-01-01 DOI:10.1121/10.0034764
Xuefei Ma, Jiaxin Ma, Zexu Ma, Rahim Khan, Hengliang Wu, Tingting Wang, Zhongwei Shen
{"title":"A modified adaptive Kalman filter algorithm for the distributed underwater multi-target passive tracking system.","authors":"Xuefei Ma, Jiaxin Ma, Zexu Ma, Rahim Khan, Hengliang Wu, Tingting Wang, Zhongwei Shen","doi":"10.1121/10.0034764","DOIUrl":null,"url":null,"abstract":"<p><p>A modified adaptive Kalman filter (AKF) algorithm is proposed to make underwater multi-target tracking with uncertain measurement noise reliable. By utilizing the proposed AKF algorithm with three core points, including an adaptive fading factor, measurement noise covariance adjustment, and an adaptive weighting factor, the unknown measurement noise and state vector can be estimated with good accuracy and robustness. The practical trial data verify this algorithm, and it has proven superior to all traditional algorithms in this Letter based on the results that it reduces the estimated position RMSEs by at least 10.29% while estimated velocity RMSEs by at least 52.57%.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0034764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A modified adaptive Kalman filter (AKF) algorithm is proposed to make underwater multi-target tracking with uncertain measurement noise reliable. By utilizing the proposed AKF algorithm with three core points, including an adaptive fading factor, measurement noise covariance adjustment, and an adaptive weighting factor, the unknown measurement noise and state vector can be estimated with good accuracy and robustness. The practical trial data verify this algorithm, and it has proven superior to all traditional algorithms in this Letter based on the results that it reduces the estimated position RMSEs by at least 10.29% while estimated velocity RMSEs by at least 52.57%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式水下多目标无源跟踪系统的改进自适应卡尔曼滤波算法。
针对测量噪声不确定的水下多目标跟踪问题,提出了一种改进的自适应卡尔曼滤波(AKF)算法。该算法采用自适应衰落因子、测量噪声协方差调整因子和自适应加权因子三个核心点,对未知测量噪声和状态向量进行估计,具有较好的精度和鲁棒性。实际试验数据验证了该算法的有效性,结果表明该算法优于本文所有传统算法,其估计位置rmse至少降低10.29%,估计速度rmse至少降低52.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Effects of cues and modulation depth on the measurement of modulation masking pattern. Binaural conversion of monaural music recordings using head-related impulse responses. Inter- and intra-annual variation in the frequency of blue whale songs in Aotearoa New Zealand. Rényi entropy-based detection of North Atlantic right whale gunshot vocalizations. Speech rate and the perception of consonant and vowel length in Japanese: Neural entrainment and episodic memory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1