Limited decrease of Southern Ocean sulfur productivity across the penultimate termination

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Nature Geoscience Pub Date : 2025-01-03 DOI:10.1038/s41561-024-01619-7
Hubertus Fischer, Andrea Burke, James Rae, Patrick J. Sugden, Tobias Erhardt, Birthe Twarloh, Maria Hörhold, Johannes Freitag, Bradley Markle, Mirko Severi, Margareta Hansson, Joel Savarino, Helena Pryer, Emily Doyle, Eric Wolff
{"title":"Limited decrease of Southern Ocean sulfur productivity across the penultimate termination","authors":"Hubertus Fischer, Andrea Burke, James Rae, Patrick J. Sugden, Tobias Erhardt, Birthe Twarloh, Maria Hörhold, Johannes Freitag, Bradley Markle, Mirko Severi, Margareta Hansson, Joel Savarino, Helena Pryer, Emily Doyle, Eric Wolff","doi":"10.1038/s41561-024-01619-7","DOIUrl":null,"url":null,"abstract":"Productivity in the Pleistocene glacial Southern Ocean was probably enhanced owing to iron fertilization by aeolian dust. Marine sediments indicate such an increase north of the modern Antarctic Polar Front but reduced biogenic activity south of it. However, quantitative estimates for the integrated net effect are difficult to obtain. Here we use the SO42− isotopic composition and other geochemical ice core records from the Atlantic sector of the Southern Ocean to reconstruct net changes in integrated biogenic sulfur productivity in the surface ocean over the penultimate glacial termination. We show that biogenic SO42− aerosol contributes 58% and 85% to the sulfate budget in Dronning Maud Land during glacial and interglacial times, respectively, and that biogenic sulfate is derived predominately from the seasonal sea ice zone. Using our quantitative reconstruction of biogenic aerosol production in the Southern Ocean source region, we show that the average biogenic sulfate production integrated over the Atlantic sector was 16% higher in the penultimate glacial 137,000–153,000 years ago compared with the later Last Interglacial 120,000–125,000 years ago. An intermittent decrease in productivity observed during early peak interglacial warming suggests that a reduction in the seasonal sea ice zone may disrupt Southern Ocean ecosystems. Biogenic sulfate production during the penultimate glacial period only modestly exceeded that in the following interglacial, indicating a balancing of dust-driven Subantarctic productivity increases and sea ice-driven high-latitude declines, according to an Antarctic ice core.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 2","pages":"160-166"},"PeriodicalIF":15.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01619-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Productivity in the Pleistocene glacial Southern Ocean was probably enhanced owing to iron fertilization by aeolian dust. Marine sediments indicate such an increase north of the modern Antarctic Polar Front but reduced biogenic activity south of it. However, quantitative estimates for the integrated net effect are difficult to obtain. Here we use the SO42− isotopic composition and other geochemical ice core records from the Atlantic sector of the Southern Ocean to reconstruct net changes in integrated biogenic sulfur productivity in the surface ocean over the penultimate glacial termination. We show that biogenic SO42− aerosol contributes 58% and 85% to the sulfate budget in Dronning Maud Land during glacial and interglacial times, respectively, and that biogenic sulfate is derived predominately from the seasonal sea ice zone. Using our quantitative reconstruction of biogenic aerosol production in the Southern Ocean source region, we show that the average biogenic sulfate production integrated over the Atlantic sector was 16% higher in the penultimate glacial 137,000–153,000 years ago compared with the later Last Interglacial 120,000–125,000 years ago. An intermittent decrease in productivity observed during early peak interglacial warming suggests that a reduction in the seasonal sea ice zone may disrupt Southern Ocean ecosystems. Biogenic sulfate production during the penultimate glacial period only modestly exceeded that in the following interglacial, indicating a balancing of dust-driven Subantarctic productivity increases and sea ice-driven high-latitude declines, according to an Antarctic ice core.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南大洋硫生产力在倒数第二个终止期的有限下降
更新世冰期南大洋的生产力可能由于风沙对铁的施肥而增强。海洋沉积物表明,现代南极极锋以北的生物活动增加,但其以南的生物活动减少。然而,很难获得综合净效应的定量估计。本文利用来自南大洋大西洋板块的SO42−同位素组成和其他地球化学冰芯记录,重建了第二次冰川终止期间海洋表面综合生物硫生产力的净变化。研究表明,在冰期和间冰期,生物源性SO42−气溶胶分别对Dronning Maud陆地的硫酸盐收支贡献了58%和85%,生物源性硫酸盐主要来自季节性海冰带。通过对南大洋源区生物成因气溶胶产量的定量重建,我们发现在137,000-153,000年前的倒数第二次冰期,大西洋板块的平均生物成因硫酸盐产量比在120,000-125,000年前的末次间冰期晚期高16%。间冰期变暖早期高峰期间观测到的间歇性生产力下降表明,季节性海冰带的减少可能会破坏南大洋的生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
期刊最新文献
Temperature rising Quasicrystalline shifting in natural orders Winter subglacial meltwater detected in a Greenland fjord Anthropogenic organic aerosol in Europe produced mainly through second-generation oxidation Davemaoite is present throughout the Earth’s lower mantle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1