Tomas Rozsypal, Jaroslav Pejchal, Jakub Opravil, Mihail Haralampiev, Victor Bocos-Bintintan, Zbynek Kobliha
{"title":"Destruction of chemical weapons stockpiles in the Russian Federation: a review","authors":"Tomas Rozsypal, Jaroslav Pejchal, Jakub Opravil, Mihail Haralampiev, Victor Bocos-Bintintan, Zbynek Kobliha","doi":"10.1007/s10311-024-01812-5","DOIUrl":null,"url":null,"abstract":"<p>Chemical weapons, designed for mass harm, are posing risks of contamination, accidents, and ecological damage, and thus require their destruction. However, destruction of chemical weapons is challenging, notably in the Russian Federation due to the large scale and complexity of chemical weapons stockpiles, the diverse toxic agents stored under varying conditions, logistical and political obstacles, financial constraints, and the disposal process. Here we review the Russian Federation’s chemical weapons disposal program with an emphasis on the political context, declared chemical weapons stockpiles, methods for destruction, health and environmental issues, and nerve agents. We analyze stockpiles totaling nearly 40,000 tonnes of chemical agents across seven facilities, focusing on their composition, storage conditions, and destruction technologies. Methods such as neutralization, bituminization, and thermal destruction are compared. Environmental risks include arsenic migration and groundwater contamination near disposal sites. We observe the limitations of using bitumen salt masses as a safe disposal method.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"56 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01812-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical weapons, designed for mass harm, are posing risks of contamination, accidents, and ecological damage, and thus require their destruction. However, destruction of chemical weapons is challenging, notably in the Russian Federation due to the large scale and complexity of chemical weapons stockpiles, the diverse toxic agents stored under varying conditions, logistical and political obstacles, financial constraints, and the disposal process. Here we review the Russian Federation’s chemical weapons disposal program with an emphasis on the political context, declared chemical weapons stockpiles, methods for destruction, health and environmental issues, and nerve agents. We analyze stockpiles totaling nearly 40,000 tonnes of chemical agents across seven facilities, focusing on their composition, storage conditions, and destruction technologies. Methods such as neutralization, bituminization, and thermal destruction are compared. Environmental risks include arsenic migration and groundwater contamination near disposal sites. We observe the limitations of using bitumen salt masses as a safe disposal method.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.