SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Biology Pub Date : 2025-01-03 DOI:10.1186/s13059-024-03467-5
Zainalabedin Samadi, Kai Hao, Amjad Askary
{"title":"SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues","authors":"Zainalabedin Samadi, Kai Hao, Amjad Askary","doi":"10.1186/s13059-024-03467-5","DOIUrl":null,"url":null,"abstract":"Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells. Structural signatures detected by SMORE also form a basis for classifying tissues. Together, our method provides a new framework for uncovering spatial complexity in tissue organization and offers novel insights into tissue function.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"83 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03467-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells. Structural signatures detected by SMORE also form a basis for classifying tissues. Together, our method provides a new framework for uncovering spatial complexity in tissue organization and offers novel insights into tissue function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMORE:空间图案揭示了复杂组织的细胞结构模式
破译组织结构和功能之间的联系需要识别和解释细胞空间排列模式的方法。我们提出SMORE,一种检测细胞顺序排列模式并检查其相关基因表达专门化的方法。应用于视网膜、大脑和胚胎组织图谱,SMORE识别出新的空间基序,包括一个为1b型双极细胞提供新的作用机制的基序。SMORE检测到的结构特征也构成了组织分类的基础。总之,我们的方法为揭示组织组织的空间复杂性提供了一个新的框架,并为组织功能提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
期刊最新文献
Predicting enviromically adapted varieties with big data. Deep-learning prediction of gene expression from personal genomes. The repetitive genome of the Ixodes ricinus tick reveals transposable elements have driven genome evolution in ticks. Global atlas of enhancer-promoter interactome in cotton genome revealed by profiling RNA-RNA spatial interactions. Unravelling the progression of the zebrafish primary body axis with reconstructed spatiotemporal transcriptomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1