Dual mycorrhizal associations in tea tree (Melaleuca alternifolia) differ between Australian temperate shrublands and subtropical forests

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2025-01-02 DOI:10.1007/s11104-024-07132-5
Luke Florence, Terry J. Rose, Michael T. Rose, Camille Truong
{"title":"Dual mycorrhizal associations in tea tree (Melaleuca alternifolia) differ between Australian temperate shrublands and subtropical forests","authors":"Luke Florence, Terry J. Rose, Michael T. Rose, Camille Truong","doi":"10.1007/s11104-024-07132-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background &amp; aims</h3><p>Tea tree (<i>Melaleuca alternifolia</i>) is an economically important crop with a narrow natural distribution in eastern Australia. Coastal and upland tea tree ecotypes have been identified based on unique shoot and root traits, but their mycorrhizal associations remain unknown. Dual mycorrhization—the ability of plants to associate with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi—is particularly common among Australian Myrtaceae, including <i>Melaleuca</i> species, but has not yet been investigated in tea tree.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We investigated the mycorrhizal associations of tea tree in three coastal and two upland populations using ITS2 metabarcoding and root anatomical observations.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Our results revealed that tea tree is a dual mycorrhizal plant, showing variability in root symbioses among ecotypes. ECM percentage root colonisation was significantly lower in the coastal tea tree ecotype compared to the upland ecotype, despite the coastal ecotype exhibiting significantly higher levels of ECM fungal richness. In contrast, the richness of the AM order Glomerales was significantly higher in the coastal tea tree ecotype than in the upland ecotype, yet comparable levels of AM root colonisation were observed between these two ecotypes. Mycorrhizal fungal community composition also differed significantly between coastal and upland ecotypes.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our study provides evidence that tea tree is a dual mycorrhizal species that can host AM and ECM fungi simultaneously within individual plants. Our findings suggest that coastal and upland tea tree ecotypes vary in their associations with mycorrhizal fungi across native habitats, which differ in climate, soil characteristics, and vegetation structure.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"17 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07132-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & aims

Tea tree (Melaleuca alternifolia) is an economically important crop with a narrow natural distribution in eastern Australia. Coastal and upland tea tree ecotypes have been identified based on unique shoot and root traits, but their mycorrhizal associations remain unknown. Dual mycorrhization—the ability of plants to associate with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi—is particularly common among Australian Myrtaceae, including Melaleuca species, but has not yet been investigated in tea tree.

Methods

We investigated the mycorrhizal associations of tea tree in three coastal and two upland populations using ITS2 metabarcoding and root anatomical observations.

Results

Our results revealed that tea tree is a dual mycorrhizal plant, showing variability in root symbioses among ecotypes. ECM percentage root colonisation was significantly lower in the coastal tea tree ecotype compared to the upland ecotype, despite the coastal ecotype exhibiting significantly higher levels of ECM fungal richness. In contrast, the richness of the AM order Glomerales was significantly higher in the coastal tea tree ecotype than in the upland ecotype, yet comparable levels of AM root colonisation were observed between these two ecotypes. Mycorrhizal fungal community composition also differed significantly between coastal and upland ecotypes.

Conclusions

Our study provides evidence that tea tree is a dual mycorrhizal species that can host AM and ECM fungi simultaneously within individual plants. Our findings suggest that coastal and upland tea tree ecotypes vary in their associations with mycorrhizal fungi across native habitats, which differ in climate, soil characteristics, and vegetation structure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
澳大利亚温带灌丛和亚热带森林中茶树(互花千层树)的双菌根结合力不同
背景,交替千层树(Melaleuca alternifolia)是一种重要的经济作物,在澳大利亚东部自然分布狭窄。沿海和山地茶树的生态型已经根据其独特的茎和根性状进行了鉴定,但它们的菌根关系尚不清楚。双菌根——植物与丛枝菌根(AM)和外生菌根(ECM)真菌结合的能力——在澳大利亚桃科(包括千层科)中特别普遍,但尚未在茶树中进行研究。方法利用ITS2元条形码技术和根系解剖观察,对3个沿海和2个山地茶树种群的菌根关联进行了研究。结果茶树是一种双菌根植物,不同生态型的根共生存在差异。尽管沿海生态型茶树的ECM真菌丰富度显著高于陆地生态型,但沿海生态型茶树的ECM根定殖率显著低于陆地生态型。相比之下,沿海生态型茶树的AM目肾球的丰富度显著高于旱地生态型,但两种生态型之间的AM根定植水平相当。菌根真菌群落组成在滨海生态型和旱地生态型之间也存在显著差异。结论茶树是一种双菌根物种,在单株内可以同时寄主AM和ECM真菌。我们的研究结果表明,沿海和高地茶树生态型与菌根真菌的关联在不同的原生生境中存在差异,这些栖息地在气候、土壤特征和植被结构上存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Adaptation strategies of three legumes to soil phosphorus availability in steppes of Inner Mongolia Linkage between plant nitrogen preference and rhizosphere effects on soil nitrogen transformation reveals a plant resource adaptive strategies in nitrogen-limited soils Water consumption turning point for Robinia pseudoacacia occurs at its middle stand age The divergent response of fungal and bacterial necromass carbon in soil aggregates under biochar amendment in paddy soil Flooding-driven gravel encroachment reshapes plant community structure and reduces community stability in an arid alluvial fan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1