Chao Meng, Zhonglin Xie, Fanfan Lu, Shenlong Jiang, Lei Xu, Wending Zhang, Yi Luo, Ting Mei
{"title":"Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy","authors":"Chao Meng, Zhonglin Xie, Fanfan Lu, Shenlong Jiang, Lei Xu, Wending Zhang, Yi Luo, Ting Mei","doi":"10.1021/acs.nanolett.4c04379","DOIUrl":null,"url":null,"abstract":"Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light–matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules. By modulating the excitation power, we have observed for the first time the Stark effect associated with Raman-forbidden transitions, revealing a strong electric-field gradient and optomagnetic effect within the plasmon cavity. Furthermore, by manipulating the plasmon tip to minimize the nanogap, we demonstrate that splitting occurs in the dipole Raman spectrum, indicating that the plasmon cavity enters a strong coupling regime. This fiber vector light-field-based TERS approach offers a unique opportunity to investigate weak matter responses with potential applications in single-molecule spectroscopy, sensors, and catalysis monitoring.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"20 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04379","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light–matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules. By modulating the excitation power, we have observed for the first time the Stark effect associated with Raman-forbidden transitions, revealing a strong electric-field gradient and optomagnetic effect within the plasmon cavity. Furthermore, by manipulating the plasmon tip to minimize the nanogap, we demonstrate that splitting occurs in the dipole Raman spectrum, indicating that the plasmon cavity enters a strong coupling regime. This fiber vector light-field-based TERS approach offers a unique opportunity to investigate weak matter responses with potential applications in single-molecule spectroscopy, sensors, and catalysis monitoring.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.