{"title":"Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries","authors":"Xiaoran Shi, Yuan Chang, Hongsheng Liu, Karpinski Dzmitry, Yu Guo, Jijun Zhao, Junfeng Gao","doi":"10.1021/acs.nanolett.4c04303","DOIUrl":null,"url":null,"abstract":"A sumanene monolayer, with a Kagome-like lattice and two flat bands and two Dirac cones in the band structures, can be atomically assembled by C<sub>21</sub> clusters. In this paper, first-principles simulations indicate surface charge doping can purposely shift the Fermi level between Dirac cones and flat bands. Interestingly, Li/Na/K atoms can be well distributed in bowl-like structures, transforming the semiconducting sumanene monolayer into a semimetal by shifting the Fermi energy exactly to the Dirac cone. As a natural hosting platform, sumanene shows a high theoretical storage capacity (1115.7 mAh/g for Na/K). Additionally, the moderate adsorption and very low diffusion barrier (≤0.24 eV) imply a suitable open-circuit voltage and ultrafast charge. Besides, the naturally curved and flexural configuration of sumanene effectively releases the lattice expansion during charging and discharging. Therefore, doped sumanene is a compelling anode material for alkali-metal batteries with high capacity, ultrafast charge, and high structural stability.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"27 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04303","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A sumanene monolayer, with a Kagome-like lattice and two flat bands and two Dirac cones in the band structures, can be atomically assembled by C21 clusters. In this paper, first-principles simulations indicate surface charge doping can purposely shift the Fermi level between Dirac cones and flat bands. Interestingly, Li/Na/K atoms can be well distributed in bowl-like structures, transforming the semiconducting sumanene monolayer into a semimetal by shifting the Fermi energy exactly to the Dirac cone. As a natural hosting platform, sumanene shows a high theoretical storage capacity (1115.7 mAh/g for Na/K). Additionally, the moderate adsorption and very low diffusion barrier (≤0.24 eV) imply a suitable open-circuit voltage and ultrafast charge. Besides, the naturally curved and flexural configuration of sumanene effectively releases the lattice expansion during charging and discharging. Therefore, doped sumanene is a compelling anode material for alkali-metal batteries with high capacity, ultrafast charge, and high structural stability.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.