Superimpositional design of crystallographic textures and macroscopic shapes via metal additive manufacturing—Game-change in component design

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2025-01-02 DOI:10.1016/j.actamat.2025.120709
Takuya Ishimoto, Naotaka Morita, Ryosuke Ozasa, Aira Matsugaki, Ozkan Gokcekaya, Shota Higashino, Masakazu Tane, Tsuyoshi Mayama, Ken Cho, Hiroyuki Y. Yasuda, Masayuki Okugawa, Yuichiro Koizumi, Masato Yoshiya, Daisuke Egusa, Taisuke Sasaki, Eiji Abe, Hajime Kimizuka, Naoko Ikeo, Takayoshi Nakano
{"title":"Superimpositional design of crystallographic textures and macroscopic shapes via metal additive manufacturing—Game-change in component design","authors":"Takuya Ishimoto, Naotaka Morita, Ryosuke Ozasa, Aira Matsugaki, Ozkan Gokcekaya, Shota Higashino, Masakazu Tane, Tsuyoshi Mayama, Ken Cho, Hiroyuki Y. Yasuda, Masayuki Okugawa, Yuichiro Koizumi, Masato Yoshiya, Daisuke Egusa, Taisuke Sasaki, Eiji Abe, Hajime Kimizuka, Naoko Ikeo, Takayoshi Nakano","doi":"10.1016/j.actamat.2025.120709","DOIUrl":null,"url":null,"abstract":"This study demonstrates the control of the crystalline orientation through metal additive manufacturing, enabling the development of component design guidelines that incorporate the inherent anisotropy of the mechanical properties (e.g., Young's modulus) in crystalline materials. We, for the first time, successfully fabricated a <111>//build direction (BD)-oriented single-crystalline-like texture in an alloy with a cubic crystal structure via laser powder bed fusion (LPBF) and completed a series of three single-crystalline-like microstructures with <001>, <011>, and <111>//BD orientations in a single material. The <001> and <111> directions exhibited the lowest and highest Young's moduli, respectively, demonstrating a wide range of control over the anisotropy of the mechanical properties of the product. To achieve a <111>//BD-oriented single-crystalline-like texture, a novel three-layer cyclic strategy of “uni”directional laser scanning at 120° angular intervals was developed by considering the easy growth direction and crystal symmetry. To the best of our knowledge, no previous study has reported this unique strategy. By superimposing the realized <111> orientation and shape-based anisotropy, products exhibiting high Young's modulus anisotropy, which cannot be expressed by shape and texture alone, were obtained via the LPBF single process. This achievement holds promise for the realization of a new component design guideline that integrates texture (mechanical properties) design for each internal location—modifiable through scanning strategies—with traditional shape optimization techniques typically used in computer-aided design. This approach enables tailored mechanical performance through optimized design strategies.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"15 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.120709","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates the control of the crystalline orientation through metal additive manufacturing, enabling the development of component design guidelines that incorporate the inherent anisotropy of the mechanical properties (e.g., Young's modulus) in crystalline materials. We, for the first time, successfully fabricated a <111>//build direction (BD)-oriented single-crystalline-like texture in an alloy with a cubic crystal structure via laser powder bed fusion (LPBF) and completed a series of three single-crystalline-like microstructures with <001>, <011>, and <111>//BD orientations in a single material. The <001> and <111> directions exhibited the lowest and highest Young's moduli, respectively, demonstrating a wide range of control over the anisotropy of the mechanical properties of the product. To achieve a <111>//BD-oriented single-crystalline-like texture, a novel three-layer cyclic strategy of “uni”directional laser scanning at 120° angular intervals was developed by considering the easy growth direction and crystal symmetry. To the best of our knowledge, no previous study has reported this unique strategy. By superimposing the realized <111> orientation and shape-based anisotropy, products exhibiting high Young's modulus anisotropy, which cannot be expressed by shape and texture alone, were obtained via the LPBF single process. This achievement holds promise for the realization of a new component design guideline that integrates texture (mechanical properties) design for each internal location—modifiable through scanning strategies—with traditional shape optimization techniques typically used in computer-aided design. This approach enables tailored mechanical performance through optimized design strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Interpretable and Physics-Informed Modeling of Solidification in Alloy Systems: A Generalized Framework for Multi-Component Prediction Re enhancement effects: Development of a ReaxFFNiAlRe reactive force field for Ni-based superalloys On modeling global grain boundary energy functions Microstructural analysis and its correlation to anneal hardening in a cobalt-nickel-based superalloy Single-crystalline Ni-based superalloy builds using laser-directed energy deposition (L-DED): A multi-scale modeling and experimental approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1