Song Gao, Fu Li, Zheng Zeng, Qiaoyun He, Hassan H A Mostafa, Suling Zhang, Taotao Wang, Yanzhou Wang, Touming Liu
{"title":"A single-cell transcriptomic atlas reveals the cell differentiation trajectory and the response to virus invasion in swelling clove of garlic","authors":"Song Gao, Fu Li, Zheng Zeng, Qiaoyun He, Hassan H A Mostafa, Suling Zhang, Taotao Wang, Yanzhou Wang, Touming Liu","doi":"10.1093/hr/uhae365","DOIUrl":null,"url":null,"abstract":"The garlic bulb comprises several cloves, the swelling growth of which is significantly hindered by the accumulation of viruses. Herein, we describe a single-cell transcriptomic atlas of swelling cloves with virus accumulation, which comprised 19 681 high-quality cells representing 11 distinct cell clusters. Cells of two clusters, clusters 7 (C7) and 11 (C11), were inferred to be from the meristem. Cell trajectory analysis suggested the differentiation of clove cells to start from the meristem cells, along two pseudo-time paths. Investigation into the cell-specific activity of invasive viruses demonstrated that garlic virus genes showed relatively low expression activity in cells of the clove meristem. There were 2060 garlic genes co-expressed with virus genes, many of which showed an association with the defense response. Five glutathione synthase/reductase genes co-expressed with virus genes displayed up-regulated expression, and the glutathione and related metabolites level showed an alteration in virus-invasive garlic clove, implying the role of glutathione in viral immunity of garlic. Our study offers valuable insights into the clove organogenesis and interaction between garlic and virus at single-cell resolution.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"82 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae365","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The garlic bulb comprises several cloves, the swelling growth of which is significantly hindered by the accumulation of viruses. Herein, we describe a single-cell transcriptomic atlas of swelling cloves with virus accumulation, which comprised 19 681 high-quality cells representing 11 distinct cell clusters. Cells of two clusters, clusters 7 (C7) and 11 (C11), were inferred to be from the meristem. Cell trajectory analysis suggested the differentiation of clove cells to start from the meristem cells, along two pseudo-time paths. Investigation into the cell-specific activity of invasive viruses demonstrated that garlic virus genes showed relatively low expression activity in cells of the clove meristem. There were 2060 garlic genes co-expressed with virus genes, many of which showed an association with the defense response. Five glutathione synthase/reductase genes co-expressed with virus genes displayed up-regulated expression, and the glutathione and related metabolites level showed an alteration in virus-invasive garlic clove, implying the role of glutathione in viral immunity of garlic. Our study offers valuable insights into the clove organogenesis and interaction between garlic and virus at single-cell resolution.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.