Joo Hyeong Suh, Sang A Han, Soo Young Yang, Jun Won Lee, Yusuke Shimada, Sang-Min Lee, Jong-Won Lee, Min-Sik Park, Jung Ho Kim
{"title":"Toward Fast-Charging and Dendritic-Free Li Growth on Natural Graphite Through Intercalation/Conversion on MoS2 Nanosheets","authors":"Joo Hyeong Suh, Sang A Han, Soo Young Yang, Jun Won Lee, Yusuke Shimada, Sang-Min Lee, Jong-Won Lee, Min-Sik Park, Jung Ho Kim","doi":"10.1002/adma.202414117","DOIUrl":null,"url":null,"abstract":"<p>During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS<sub>2</sub>) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance. MoS<sub>2</sub> spontaneously transforms into Li<sub>2</sub>S and Mo nanoclusters through intercalation and conversion with Li<sup>+</sup>, altering the chemical composition and stability of the SEI layer on the NG, promoting faster Li<sup>+</sup> transport, and reducing interfacial resistance. The MoS<sub>2</sub>-NG anode shows improved fast-charging capability and cycling performance under 3.0 C-charging and 1.0 C-discharging over 300 cycles without compromising energy density. In the full-cell configuration, a charging time of 14.7 min at 80% state of charge is achieved, making it suitable for electric vehicle applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 7","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202414117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202414117","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS2) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance. MoS2 spontaneously transforms into Li2S and Mo nanoclusters through intercalation and conversion with Li+, altering the chemical composition and stability of the SEI layer on the NG, promoting faster Li+ transport, and reducing interfacial resistance. The MoS2-NG anode shows improved fast-charging capability and cycling performance under 3.0 C-charging and 1.0 C-discharging over 300 cycles without compromising energy density. In the full-cell configuration, a charging time of 14.7 min at 80% state of charge is achieved, making it suitable for electric vehicle applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.