Toward Fast-Charging and Dendritic-Free Li Growth on Natural Graphite Through Intercalation/Conversion on MoS2 Nanosheets

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-01-02 DOI:10.1002/adma.202414117
Joo Hyeong Suh, Sang A Han, Soo Young Yang, Jun Won Lee, Yusuke Shimada, Sang-Min Lee, Jong-Won Lee, Min-Sik Park, Jung Ho Kim
{"title":"Toward Fast-Charging and Dendritic-Free Li Growth on Natural Graphite Through Intercalation/Conversion on MoS2 Nanosheets","authors":"Joo Hyeong Suh,&nbsp;Sang A Han,&nbsp;Soo Young Yang,&nbsp;Jun Won Lee,&nbsp;Yusuke Shimada,&nbsp;Sang-Min Lee,&nbsp;Jong-Won Lee,&nbsp;Min-Sik Park,&nbsp;Jung Ho Kim","doi":"10.1002/adma.202414117","DOIUrl":null,"url":null,"abstract":"<p>During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS<sub>2</sub>) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance. MoS<sub>2</sub> spontaneously transforms into Li<sub>2</sub>S and Mo nanoclusters through intercalation and conversion with Li<sup>+</sup>, altering the chemical composition and stability of the SEI layer on the NG, promoting faster Li<sup>+</sup> transport, and reducing interfacial resistance. The MoS<sub>2</sub>-NG anode shows improved fast-charging capability and cycling performance under 3.0 C-charging and 1.0 C-discharging over 300 cycles without compromising energy density. In the full-cell configuration, a charging time of 14.7 min at 80% state of charge is achieved, making it suitable for electric vehicle applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 7","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202414117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202414117","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS2) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance. MoS2 spontaneously transforms into Li2S and Mo nanoclusters through intercalation and conversion with Li+, altering the chemical composition and stability of the SEI layer on the NG, promoting faster Li+ transport, and reducing interfacial resistance. The MoS2-NG anode shows improved fast-charging capability and cycling performance under 3.0 C-charging and 1.0 C-discharging over 300 cycles without compromising energy density. In the full-cell configuration, a charging time of 14.7 min at 80% state of charge is achieved, making it suitable for electric vehicle applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用二硫化钼纳米片的插层/转换在天然石墨上快速充电和无枝晶Li生长
在快速充电过程中,商用石墨阳极表面镀锂不均匀,影响了锂离子电池的电化学性能,造成了安全问题。由于与有机电解质的副反应,钝化层固体电解质界面(SEI)的形成与快速充电条件下的长期循环性能有关,需要进行综合分析。研究表明,在天然石墨(NG)表面涂覆二硫化钼(MoS2)可以调节SEI层的性能,从而缩短了充电时间,提高了长期循环性能。MoS2通过与Li+的插层和转化,自发转化为Li2S和Mo纳米团簇,改变了NG上SEI层的化学组成和稳定性,促进了Li+更快的输运,降低了界面阻力。在3.0 c充电和1.0 c放电超过300次循环的情况下,MoS2-NG阳极具有更好的快速充电能力和循环性能,且不影响能量密度。在全电池配置中,在80%充电状态下的充电时间为14.7分钟,使其适合电动汽车应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene CuPt Alloy Enabling the Tandem Catalysis for Reduction of HCOOH and NO3− to Urea at High Current Density Giant and Anisotropic Enhancement of Spin-Charge Conversion in Graphene-Based Quantum System High-Entropy 1T-Phase Quantum Sheets of Transition-Metal Disulfides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1