Automation of multi-layer multi-domain transport networks and the role of AI [Invited]

IF 4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Optical Communications and Networking Pub Date : 2025-01-03 DOI:10.1364/JOCN.537463
Oscar Gonzalez de Dios;Pablo Armingol Robles;Liesbeth Roelens;Alejandro Muniz-Da-Costa;Ignacio de Miguel;Ramon J. Duran Barroso;Juan Pedro Fernandez-Palacios
{"title":"Automation of multi-layer multi-domain transport networks and the role of AI [Invited]","authors":"Oscar Gonzalez de Dios;Pablo Armingol Robles;Liesbeth Roelens;Alejandro Muniz-Da-Costa;Ignacio de Miguel;Ramon J. Duran Barroso;Juan Pedro Fernandez-Palacios","doi":"10.1364/JOCN.537463","DOIUrl":null,"url":null,"abstract":"With increasing demand for customized connectivity, transport networks must evolve towards autonomous and customer-driven network management. This paper presents a comprehensive overview of network autonomy and the challenges associated with evolving toward higher levels of autonomy. Moreover, various use cases of artificial intelligence in network automation in IP-over-DWDM transport networks are also analyzed, in particular related to traffic prediction, quality of transmission, anomaly detection, network planning, and proactive failure management. Additionally, the role of generative AI in network operation is explored. Central to our discussion is a proposed control architecture based on open and standard SDN APIs, which incorporates network slicing for multi-layer transport networks and enables real-time access to normalized data, facilitating autonomous network operation.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"17 2","pages":"A124-A133"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10823390","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10823390/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing demand for customized connectivity, transport networks must evolve towards autonomous and customer-driven network management. This paper presents a comprehensive overview of network autonomy and the challenges associated with evolving toward higher levels of autonomy. Moreover, various use cases of artificial intelligence in network automation in IP-over-DWDM transport networks are also analyzed, in particular related to traffic prediction, quality of transmission, anomaly detection, network planning, and proactive failure management. Additionally, the role of generative AI in network operation is explored. Central to our discussion is a proposed control architecture based on open and standard SDN APIs, which incorporates network slicing for multi-layer transport networks and enables real-time access to normalized data, facilitating autonomous network operation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层多域传输网络的自动化与人工智能的作用[特邀]
随着对定制连接的需求不断增加,传输网络必须向自主和客户驱动的网络管理发展。本文全面概述了网络自治以及向更高层次自治发展所面临的挑战。此外,还分析了人工智能在IP-over-DWDM传输网络中网络自动化中的各种用例,特别是与流量预测、传输质量、异常检测、网络规划和主动故障管理相关的用例。此外,还探讨了生成式人工智能在网络运营中的作用。我们讨论的核心是基于开放和标准SDN api的拟议控制架构,该架构结合了多层传输网络的网络切片,并能够实时访问规范化数据,促进自主网络运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
16.00%
发文量
104
审稿时长
4 months
期刊介绍: The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.
期刊最新文献
On the cross-layer restoration to address packet layer failures in P2MP-TRX-based WSONs SHAP-assisted EE-LightGBM model for explainable fault diagnosis in practical optical networks Demonstration of a three-node wavelength division multiplexed hybrid quantum-classical network through multicore fiber Programmable packet-optical network security and monitoring using DPUs with embedded GPUs [Invited] Overview of SDN control of multiband over SDM optical networks with physical layer impairments [Invited Tutorial]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1