Guangyi Lu;Lihui Wang;Ling Wang;Xin Gao;Jiahao Wei;Haiming Wang
{"title":"Troubleshooting a High-Leakage Issue of an Overdrive FinFET ESD Power Clamp From Fabrication Perspective","authors":"Guangyi Lu;Lihui Wang;Ling Wang;Xin Gao;Jiahao Wei;Haiming Wang","doi":"10.1109/TED.2024.3509389","DOIUrl":null,"url":null,"abstract":"This article presents the troubleshooting of a high-leakage issue in an overdrive fin field-effect transistor (FinFET) electrostatic discharge (ESD) power clamp. With silicon data exhibiting abnormal results, elaborate troubleshooting, including device reliability and simulation to silicon (S2S) gap analyses, are performed and presented. Through alignments of silicon data and presumptive simulation results, fabrication-induced root cause is successfully revealed. It is confirmed by physical failure analysis (PFA) results that the narrow width of high-resistance (HiR) resistors induces an aggressive pull-back effect during fabrication. This pull-back effect results in open connections of related HiR resistors and explains the observed abnormal silicon data.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"62-67"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10790867/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents the troubleshooting of a high-leakage issue in an overdrive fin field-effect transistor (FinFET) electrostatic discharge (ESD) power clamp. With silicon data exhibiting abnormal results, elaborate troubleshooting, including device reliability and simulation to silicon (S2S) gap analyses, are performed and presented. Through alignments of silicon data and presumptive simulation results, fabrication-induced root cause is successfully revealed. It is confirmed by physical failure analysis (PFA) results that the narrow width of high-resistance (HiR) resistors induces an aggressive pull-back effect during fabrication. This pull-back effect results in open connections of related HiR resistors and explains the observed abnormal silicon data.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.