Optimization of Asymmetries in Source/Drain Configurations and Tapered Channels for Vertical-Transport Silicon Nanosheet FETs

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-11-19 DOI:10.1109/TED.2024.3496668
Jinsu Jeong;Sanguk Lee;Rock-Hyun Baek
{"title":"Optimization of Asymmetries in Source/Drain Configurations and Tapered Channels for Vertical-Transport Silicon Nanosheet FETs","authors":"Jinsu Jeong;Sanguk Lee;Rock-Hyun Baek","doi":"10.1109/TED.2024.3496668","DOIUrl":null,"url":null,"abstract":"This article presents a thorough investigation of the optimization of asymmetries in vertical-transport nanosheet field-effect transistors (VFETs), considering both asymmetric source/drain (S/D) structures and channel tapering. For asymmetric S/D configurations, n-type FETs (nFETs) exhibit smaller RC delay in the top-source (TopS) configuration, wherein the source has a shorter current path and less voltage drop. Conversely, p-type FETs (pFETs) exhibit smaller RC delay in the bottom-source (BotS) configuration owing to the dominant effect of asymmetric channel stress over the current path difference. Meanwhile, channel tapering significantly affects the optimization of asymmetric VFETs, especially for nFETs. Considering channel tapering, nFET with the smallest RC delay is the BotS configuration, in contrast to the untapered case, whereas BotS configuration is still the optimal structure for pFETs, regardless of the channel tapering. Finally, optimal structures of asymmetric VFETs are presented for various channel widths based on a comparison of the power-delay product (PDP). In nFETs, BotS configuration is optimal for wide channel widths; however, the TopS becomes superior as the channel width decreases in terms of PDP. Meanwhile, optimal structures for pFETs are BotS configurations regardless of the channel tapering and width. For various system-on-chip (SoC) applications, nFETs require a more detailed design than pFETs. Consequently, this study affords comprehensive insights for optimizing VFETs suitable for various applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"75-82"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10757349/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a thorough investigation of the optimization of asymmetries in vertical-transport nanosheet field-effect transistors (VFETs), considering both asymmetric source/drain (S/D) structures and channel tapering. For asymmetric S/D configurations, n-type FETs (nFETs) exhibit smaller RC delay in the top-source (TopS) configuration, wherein the source has a shorter current path and less voltage drop. Conversely, p-type FETs (pFETs) exhibit smaller RC delay in the bottom-source (BotS) configuration owing to the dominant effect of asymmetric channel stress over the current path difference. Meanwhile, channel tapering significantly affects the optimization of asymmetric VFETs, especially for nFETs. Considering channel tapering, nFET with the smallest RC delay is the BotS configuration, in contrast to the untapered case, whereas BotS configuration is still the optimal structure for pFETs, regardless of the channel tapering. Finally, optimal structures of asymmetric VFETs are presented for various channel widths based on a comparison of the power-delay product (PDP). In nFETs, BotS configuration is optimal for wide channel widths; however, the TopS becomes superior as the channel width decreases in terms of PDP. Meanwhile, optimal structures for pFETs are BotS configurations regardless of the channel tapering and width. For various system-on-chip (SoC) applications, nFETs require a more detailed design than pFETs. Consequently, this study affords comprehensive insights for optimizing VFETs suitable for various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化垂直传输硅纳米片场效应晶体管的源极/漏极不对称配置和锥形沟道
本文对垂直传输纳米片场效应晶体管(VFET)中不对称现象的优化进行了深入研究,同时考虑了非对称源极/漏极(S/D)结构和沟道渐变。对于非对称 S/D 结构,n 型场效应晶体管 (nFET) 在顶源 (TopS) 结构中表现出较小的 RC 延迟,其中源极的电流路径较短,压降较小。相反,p 型场效应晶体管 (pFET) 在底部-源极 (BotS) 配置中表现出较小的 RC 延迟,这是由于非对称沟道应力对电流路径差的主要影响。同时,沟道锥度对非对称 VFET 的优化有很大影响,尤其是对 nFET。考虑到沟道锥形化,与未锥形化的情况相比,具有最小 RC 延迟的 nFET 是 BotS 结构,而对于 pFET,无论沟道锥形化与否,BotS 结构仍然是最佳结构。最后,根据功率-延迟积(PDP)的比较,介绍了不同沟道宽度的非对称 VFET 的最佳结构。在 nFET 中,BotS 结构是宽沟道宽度的最佳结构;然而,随着沟道宽度的减小,TopS 结构在功率延迟积方面变得更优越。同时,pFET 的最佳结构是 BotS 配置,与沟道锥度和宽度无关。对于各种片上系统 (SoC) 应用,nFET 需要比 pFET 更详细的设计。因此,本研究为优化适合各种应用的 VFET 提供了全面的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1